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ABSTRACT
Wide-area distributed applications are challenging to debug, optimize,
and maintain. We present Wide-Area Project 5 (WAP5), which aims to
make these tasks easier by exposing the causal structure of communica-
tion within an application and by exposing delays that implybottlenecks.
These bottlenecks might not otherwise be obvious, with or without the
application’s source code. Previous research projects have presented al-
gorithms to reconstruct application structure and the corresponding tim-
ing information from black-box message traces of local-area systems. In
this paper we present (1) a new algorithm for reconstructingapplication
structure in both local- and wide-area distributed systems, (2) an infras-
tructure for gathering application traces in PlanetLab, and (3) our ex-
periences tracing and analyzing three systems: CoDeeN and Coral, two
content-distribution networks in PlanetLab; and Slurpee,an enterprise-
scale incident-monitoring system.

Categories and Subject Descriptors: D.2.5[Software Engineering]:
Testing and Debugging—distributed debugging, testing tools

General terms: Algorithms, Performance, Measurement

Keywords: Performance debugging, black box systems, distributed sys-
tems, performance analysis

1. INTRODUCTION
Wide-area distributed systems are difficult to build and deploy be-

cause traditional debugging tools do not scale across multiple processes,
machines, and administrative domains. Compared to local-area dis-
tributed systems, wide-area distributed systems introduce new sources
of delays and failures, including network latency, limitedbandwidth,
node unreliability, and parallel programming. Furthermore, the sheer
size of a wide-area system can make it daunting to find and debug un-
derperforming nodes or to examine event traces. Often, programmers
have trouble understanding the communications structure of a complex
distributed system and have trouble isolating the specific sources of de-
lays.

In this paper, we present the Wide-Area Project 5 (WAP5) system, a
set of tools for capturing and analyzing traces of wide-areadistributed
applications. The WAP5 tools aid the development, optimization, and
maintenance of wide-area distributed applications by revealing the causal
structure and timing of communication in these systems. They high-
light bottlenecks in both processing and communication. Bymapping
an application’s communication structure, they highlightwhen an appli-
cation’s data flow follows an unexpected path. By discovering the timing
at each step, they isolate processing or communication hotspots.
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Figure 1: Example causal path through Coral.

Figure 2: Schematic of our tool chain.

We are focusing on applications running on PlanetLab [3], perhaps the
best collection of widely distributed applications for which research ac-
cess is feasible. In particular, we have applied our tools tothe CoDeeN [19]
and Coral [7] content-distribution networks (CDNs). WAP5 constructs
causal structures, such as the one shown for Coral in Figure 1, which
matches a path described by Figure 1 in a paper on Coral [7].

Our tool chain consists of four steps, depicted in Figure 2. First, our
dynamically linked interposition library captures one trace of socket-
API calls per application process on each participating machine. Sec-
ond, we reconcile the socket-API traces to form a single trace with one
record per message containing both a sent and a received timestamp.
These timestamps reflect the clocks at the sender and receiver machines,
respectively, and are used to quantify and compensate for clock skew
and to measure network latency. Third, we run our causality analysis
algorithm on the reconciled trace to find causal paths through the appli-
cation, like the one in Figure 1. Finally, we render the causal paths as
trees or timelines.

In the space of tools that analyze application behavior for performance
debugging, our approach is among the least invasive and works on the
largest scale of systems: wide-area distributed systems. Other causal-
path analysis tools differ in their invasiveness or in the scale of systems
they target. Our earlier work [1], known asProject 5, targets heteroge-
neous local-area distributed systems and is minimally invasive because
it works using only network traces. Magpie [2] and Pinpoint [4] target
(mostly) homogeneous local-area distributed systems and require spe-
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cific platforms with the appropriate logging capabilities.In some cases,
Pinpoint also requires the ability to change message formats. DPM [10]
traces single-computer systems using an instrumented kernel. Pip [13]
supports wide-area systems but requires manual annotations, an instru-
mented platform, or both. We discuss related work further inSection 8.

This paper makes the following contributions:
• A new causal-path inference algorithm, themessage-linking algo-

rithm, that introduces support for wide-area systems. Some of the
new features of linking also make it easier to analyze local-area
systems. We provide a full comparison with our previous algo-
rithms [1] in Section 5.3.

• A discussion of several previously unaddressed problems with
causal path analysis, including naming issues, DHT issues,wide-
area network latencies, clock skew, and network address transla-
tion.

• Results from applying our tools to three real systems, the CoDeeN
and Coral CDNs running on PlanetLab, and Slurpee, an enterprise-
scale incident-monitoring system.

In the next section, we define the problem we are solving more ex-
plicitly. We then describe the three main tools in our approach, which
perform trace capture, trace reconciliation, and causal path analysis over
the trace. Finally, we present results from three systems.

2. PROBLEM DEFINITION
In this section, we define the problem we are solving. We include

a description of the target applications, discussion of some distributed
hash table (DHT) issues, definitions of our terminology for communi-
cation between components, our model of causality, and several issues
related to naming of components.

2.1 Target applications
Our primary goal is to expose the causal structure of communication

within a distributed application and to quantify both processing delays
inside nodes and communication (network) delays. In this paper, we
specifically focus on wide-area distributed systems (and other systems)
where the network delays are non-negligible. We further focus on Plan-
etLab applications because we can get access to them easily.However,
nothing in our approach requires the use of PlanetLab.

We aim to use as little application-specific knowledge as possible and
not to change the application. We can handle applications whose source
code is unavailable, whose application-level message formats are un-
known, and, in general, withouta priori information about the design of
the application.

Our tools can handle distributed systems whose “nodes” spana range
of granularities ranging from entire computers down to single threads,
and whose communication paths include various network protocols and
intra-host IPC. We aim to support systems that span multipleimplemen-
tation frameworks; for example, a multi-tier application where one tier
is J2EE, another is .Net, and a third is neither.

We currently assume the use of unicast communications and weas-
sume that communication within an application takes the form of mes-
sages. It might be possible to extend this work to analyze multicast
communications.

2.2 DHT issues
Several interesting distributed applications are based onDHTs. There-

fore, we developed some techniques specifically for handling DHT-based
applications.

DHTs perform lookups either iteratively, recursively, or recursively
with a shortcut response [5]. In an iterative lookup, the node performing
the query contacts several remote hosts (normallyO(lgn) for systems
with n total hosts) sequentially, and each provides a referral to the next.
In a recursive lookup, the node performing the query contacts one host,

which contacts a second on its behalf, and so on. A recursive lookup
may return back through each intermediary, or it may return directly
along a shortcut from the destination node back to the client.

With an iterative DHT, all of the necessary messages for analysis of
causal paths starting at a particular node can be captured atthat node.
With a recursive or recursive-shortcut DHT, causal path analysis requires
packet sniffing or instrumentation at every DHT node. The algorithm
presented in this paper handles all three kinds of DHT.

DHTs create an additional “aggregation” problem that we defer until
Section 2.5.1.

2.3 Communications terminology
Networked communication design typically follows a layered archi-

tecture, in which the protocol data units (PDUs) at one layermight be
composed of multiple, partial, or overlapping PDUs at a lower layer.
Sometimes the layer for meaningfully expressing an application’s causal
structure is higher than the layer at which we can obtain traces. For ex-
ample, in order to send a 20 KB HTTP-level response message, aWeb
server might break it into write() system call invocations based on an 8
KB buffer. The network stack then breaks these further into 1460-byte
TCP segments, which normally map directly onto IP packets, but which
might be fragmented by an intervening router.

We have found it necessary to clearly distinguish between messages at
different layers. In this paper, we use the termpacketto refer to an IP or
UDP datagram or a TCP segment. We usemessageto refer to data sent
by a single write() system call or received by a single read(). We refer
to a large application-layer transfer that spans multiplemessagesas afat
message. Fat messages require special handling: we combine adjacent
messages in a flow into a single large message before beginning causal
analysis. Conversely, several sufficiently small application-layer units
may be packed into a single system call or network packet, in protocols
that allow pipelining. In the systems analyzed here, such pipelining does
not occur. In systems where pipelining is present, our tool chain would
see fewer requests than were really sent but would still find causality.

2.4 Causality model
We consider message A to have caused message B if message A is

received by node X, message B is sent by node X, and the logic innode
X is such that the transmission of B depends on receiving A. Inour
current work, we assume that every message B is either causedby one
incoming message A or is spontaneously generated by node X. This
assumption includes the case where message A causes the generation of
several messagesB1,B2, ...,Bn.

An application where one message depends on the arrival of many
messages (e.g., a barrier) does not fit this model of causality. WAP5
would attribute the outgoing message to only one—probably the final—
incoming message. Additionally, if structure or timing of acausal path
pattern depends on application data inside a message, WAP5 will view
each variation as a distinct path pattern and will not detectany correla-
tion between the inferred path instances and the contents ofmessages.

We cannot currently handle causality that involves asynchronous timers
as triggers; asynchronous events appear to be spontaneous rather than
related to earlier events. This restriction has not been a problem for the
applications we analyzed for this paper. We also cannot detect that a
node is delayed because it is waiting for another node to release a lock.

2.5 Naming issues
Our trace-based approach to analyzing distributed systemsexposes

the need for multiple layers of naming and for various name translations.
Clear definitions of the meanings of various names simplify the design
and explanation of our algorithms and results. They also help us define
how to convert between or to match various names.

Causal path analysis involves two categories of named objects, com-
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putational nodes and communication flow endpoints. Nodes might be
named using hostnames, process IDs, or at finer grains. Endpoints might
be named using IP addresses, perhaps in conjunction with TCPor UDP
ports, or UNIX-domain socket pathnames. These multiple names lead
to several inter-related challenges:

• Which level of name to use: While we want our tools to avoid in-
corporating application-specific knowledge, theirusemay require
some knowledge of the application. In particular, the user of our
tools may have to decide whether to treat a host as a single node
or as a collection of process-level nodes. The process-level view
might add useful detail if each process has a distinct role, or it
might just add confusion if processes on a host are interchange-
able, as in servers built using a process pool.
The selection of naming granularity interacts with the choice of
tracing technology. Packet sniffing, the least invasive tracing ap-
proach, makes it difficult or impossible to identify processes rather
than hosts. Use of an interposition library, such as the one we de-
scribe in Section 3, allows process-level tracing.

• How to match node names and endpoint names: A host might
include several process nodes and multiple communication end-
points. For example, a Web proxy process could accept HTTP
requests on port 8090 and send forwarded requests using a series
of ephemeral port numbers; in this case, all these connections be-
long to one process. However, the same host might run both a
Web server and an FTP server, in which case the two different
server ports correspond to distinct processes. Using an interposi-
tion library, we capture enough information to match endpoints to
processes; it is much harder using packet-sniffing.

• How to find both ends of a path: Whenever possible, we cap-
ture trace records at each host in a distributed system. Thus, each
message within the system generates two trace records: one at the
sender and one at the receiver. In order to get both sender and
receiver timestamps for a message, we need to match up the two
trace records – in effect, finding a common name for each mes-
sage. This task is usually straightforward but can be complicated
by multihomed hosts, reordered or lost datagrams, or clock offset.

The distinction between node names and endpoint names allows the
analysis of a single distributed application by using multiple traces ob-
tained with several different techniques. For example, we could trace
UNIX-domain socket messages using the interposition library and si-
multaneously trace network messages using a packet sniffer.

Table 1 shows the various names (the columns) captured by ourinter-
position library, and where they are used in our analysis. Weinclude this
table to illustrate the complexity of name resolution; it may be helpful
to refer to it when reading Sections 4 and 5.

2.5.1 Aggregation across multiple names
Causal path analysis aggregates similar path instances into path pat-

terns, presenting to the user a count of the instances inferred along with
average timing information. The simplest form of aggregation is com-
bining path instances with identical structure, i.e., those that involve ex-
actly the same nodes in exactly the same order. More advancedaggrega-
tion techniques look for isomorphic path instances that perform the same
tasks via different nodes, perhaps for load balancing. Without aggrega-
tion, it is difficult to visualize how a system performs overall: where
the application designer thinks of an abstract series of steps through an
application, causal path analysis finds a combinatorial explosion of rare
paths going through specific nodes. Aggregation is particularly impor-
tant for DHTs, which are highly symmetric and use an intentionally wide
variety of paths for reliability and load balancing. Aggregating paths is
useful for finding performance bugs that are due to a design orcoding
error common to all hosts.

Once causal path analysis has identified a set of isomorphic paths, it is

possible to aggregate the results based on therole of a node rather than
its name. For example, Coral and CoDeeN have thousands of clients
making requests; trees starting at one client would not normally be ag-
gregated with trees starting at another. As another example, Figure 3(a)
shows two causal paths with the same shape but different hostnames. In
the top path, Host D fills the role of the first-hop proxy, and Host B fills
the role of the second-hop proxy; in the other path, Host B is the first-
hop proxy and and Host C is the second-hop proxy. What we mightlike
to see instead is the aggregated path in Figure 3(b), which aggregates the
clients, first-hop, and second-hop proxies. Of course, the unaggregated
paths should still be available, in case a performance problem afflicts
specific nodes rather than a specific task.

Currently, our code aggregates clients, but we have not yet imple-
mented aggregation across servers. To aggregate clients, we designate
each TCP or UDP port asfixedor ephemeraland each node as a client
or a server. A port is fixed if it communicates with many other ports.
For example, a node making a DNS request will allocate a source port
dynamically (normally either sequentially or randomly), but the destina-
tion port will always be 53. Thus, causal path analysis discovers that 53
is a fixed port because it talks to hundreds or thousands of other ports.
A node is considered a server if it uses fixed ports at least once, and
a client otherwise. Our algorithm replaces all client node names with a
single string “CLIENT” and replaces all ephemeral port numbers with an
asterisk before building and aggregating trees. Thus, otherwise identical
trees beginning at different clients with different ephemeral source-port
numbers can be aggregated.

3. TRACE COLLECTION INFRASTRUCTURE
We now describe how we capture traces of inter-node communication.

We wrote an interposition library, LibSockCap, to capture network and
inter-process communication. LibSockCap captures mostlythe same
information asstrace -e network(i.e., a trace of all networking system
calls), plus additional needed information with much loweroverhead.
The extra information is needed for reconciliation and includes finger-
prints of UDP message contents, the PID of peers connecting through
a Unix socket, the peer name even whenacceptdoes not ask for it, the
local name bound whenconnectis called, and the number assigned to
a dynamic listening port not specified withbind. Further, LibSockCap
imposes less than 2µsof overhead per captured system call, while strace
imposes up to 60µs of overhead per system call. Finally, LibSockCap
generates traces about an order of magnitude smaller than strace.

LibSockCap traces dynamically linked applications on any platform
that supports library interposition viaLD PRELOAD. LibSockCap inter-
poses on the C library’s system call wrappers to log all socket-API activ-
ity, for one or more processes, on all network ports and also on UNIX-
domain sockets. For each call, LibSockCap records a timestamp and
all parameters (as shown in Table 1), but not the message contents. In
addition, LibSockCap monitors calls tofork so that it can maintain a
separate log for each process. On datagram sockets, it also records a
message checksum so that dropped, duplicated, and reordered packets
can be detected.

There are several advantages to capturing network traffic through li-
brary interposition rather than through packet sniffing, either on each
host or on each network segment.

• Logical message semantics: messages are captured with the same
order and boundaries that the application sees, rather thanafter the
network potentially fragments or combines them.

• Finer granularity : LibSockCap attributes communication to in-
dividual processes rather than to whole hosts. Also, LibSockCap
can capture UNIX-domain sockets, while sniffing cannot.

• Efficiency: LibSockCap adds less overhead than running a sniffer
on the same host, as is necessary on PlanetLab, because it runs in
the memory space of the processes being traced and so does not
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Socket API parameters Other captured information
both ends: socket file peer

(IP addr,port) path descriptor length hostname PID PID checksum timestamp

trace file header C C C
new connection: TCP C C C
new connection: UDP or raw IP C C C
new connection: UNIX domain C C C C
message: TCP or UNIX domain C C C
message: UDP or raw IP C C C C C

reconciliation: matching send & rcv recs U U U U U U
causal analysis (message linking) U U U
aggregating nodes U U

Table 1: Where different naming information is captured (C) or used (U).

Host X
Client

Host B
1st proxy

Host C
2nd proxy

Host B
1st proxy

Host X
Client

Host Y
Client

Host D
1st proxy

Host B
2nd proxy

Host D
1st proxy

Host Y
Client

(a) unaggregated paths

Any host as
Client

Any host as
1st proxy

Any host as
2nd proxy

Any host as
1st proxy

Any host as
Client

(b) corresponding aggregated path

Figure 3: Example of aggregation across multiple names

require context switches or buffer copies to record messages.
Interposition does have disadvantages relative to sniffing.
• No control packets: only sniffing can capture network control

messages. However, our work focuses on the causal relationships
between logical messages, not control messages.

• Lack of packet boundaries, fragments, and retransmissions:
problems arising in the network stack or in the network, suchas
excessive fragmentation or retransmission, are not visible to our
interposition library.

• Timestamps added by user process: any delays introduced by
the network stack happen after LibSockCap timestamps the event
and get attributed to network delay.

The advantages are significant enough that even in environments where
sniffing is feasible, we prefer to use LibSockCap.

3.1 Runtime overhead
To verify that LibSockCap imposes negligible overhead on the appli-

cations being traced, we ran Seda’s HttpLoad [20] using Java1.4.101
against Apache 1.3.1. Both the client and the server were dual 2.4 GHz
Pentium 4 Xeon systems running Linux 2.4.25. LibSockCap hadno
measurable effect on throughput or on average, 90th-percentile, or max-
imum request latency for any level of offered load. However,the server
CPU was not saturated during this benchmark, so LibSockCap might
have more impact effect on a CPU-bound task.

We measured the absolute overhead of LibSockCap by comparing the
time to make read/write system calls with and without interposition ac-
tive, using the server described above. LibSockCap adds about 0.02µsof
overhead to file reads and writes, which generate no log entries; 1.03µs
to TCP reads; 1.02µs to TCP writes; and 0.75µs to UDP writes. In our
benchmark, Apache made at most 3,019 system calls per second, equal
to an overhead of about 0.3% of one CPU’s total cycles.

3.2 Deployment experience
To capture the traces used for our experiments, we sent LibSockCap

sources to the authors of Coral and CoDeeN. Both reported back that
they used their existing deployment mechanisms to install LibSockCap

on all of their PlanetLab nodes. After the processes ran and collected
traces for a few hours, they removed LibSockCap, retrieved the traces to
a single node, and sent them to us.

While LibSockCap is more invasive than packet sniffing (in that it
requires additional software on each node), packet sniffingis more lo-
gistically challenging in practice, as we discuss in Section 7.

4. TRACE RECONCILIATION
The trace reconciliation algorithm converts a set of per-process traces

of socket activity (both network and inter-process messages) to a single,
more abstract, trace of inter-node messages. This algorithm includes
translation from socket events to flow-endpoint names and node names.
The output is a trace containing logical message tuples of the form
(sender-timestamp, sender-endpoint, sender-node, receiver-timestamp,
receiver-endpoint, receiver-node).

Name translation: In the LibSockCap traces, eachsendor recvevent
contains a timestamp, a size, and a file descriptor. Reconciliation con-
verts each file descriptor to a flow-endpoint name. With UNIX domain
and TCP sockets, we can easily find the flow-endpoint name (i.e., UNIX
path or<IP address, port> pair) in prior connect, accept, or bind API
events in the trace. File descriptors for datagram (UDP or raw IP) sock-
ets, however, may or may not be bound to set source and destination
addresses. If not, the remote address is available from thesendtoor
recvfromparameter and we use the host’s public IP address or the loop-
back address as the local address.

Timestamps: We include the timestamps from both the sender and
receiver traces in the final trace. With both timestamps, it is simple
to obtain the network latency of each message, as we describein Sec-
tion 5.2. Whenever we have only one timestamp for a message (because
we only sniffed one endpoint), we usenil for the other timestamp.

5. THE MESSAGE LINKING ALGORITHM
Causal path analysis looks for causal relationships in the logical mes-

sages produced by trace reconciliation. Its output is a collection of path
patterns, each annotated with one or more scores indicatingimportance.
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Figure 4: Sample link probability tree and the two causal path
instances it generates. Solid, dotted, and dashed arrows indicate
“probably-true,” “probably-false,” and “try-both” links , respec-
tively.

Figure 5: Three calls into B that might have caused B→C.

Message linking, or linking for short, is a new causality analysis algo-
rithm for distributed communication traces. Linking workswith both
local-area and wide-area traces, which may be captured using LibSock-
Cap, a sniffer, or other methods. We compare linking with other causal
path analysis algorithms at the end of this section.

5.1 Algorithm description
For each message in the trace, linking attempts to determineif the

message is spontaneous or is caused by another message. In many cases,
the cause is ambiguous, in which case linking assigns a probability for
thelink between theparentmessage into the node and thechild message
out of the node. The probabilities of the links for all parentmessages to
a given child message sum to one.

Linking then constructs path instances from these links andassigns
each path instance a confidence score that is the product of all of the link
probabilities in the tree. The total score across all instances of a given
path pattern represents the algorithm’s estimate of the number of times
the pattern appeared in the trace. If a link is sufficiently ambiguous (e.g.,
if it has a probability near 0.5), two path instances will be built, one with
the link and one without it. Figure 4 shows an example link probability
tree and the causal path instances it generates. The tree on the left shows
all of the messages that might have been caused, directly or indirectly, by
one specific A→B message, with a probability assigned to each possible
link. From this tree, the linking algorithm generates the two causal path
instances on the right, each with a probability based on the decisions
made to form it. Here, two path instances are generated because the link
between A→B and B→F has probability close top = 0.5.

In broad terms, the linking algorithm consists of three steps: (1) esti-
mating the average causal delay for each node, (2) determining possible
parents for each message, and (3) building path instances and then ag-
gregating them into path patterns. We describe the algorithm in more
detail in the sections that follow.

Step 1: Estimating the average causal delay
The probability of each link between a parent message into B and a
child message out of B is a function of how well it fits the causal de-
lay distribution. Causal delays represent the service times at each node.
Therefore, as is common in system modeling, we fit them to an expo-

nential distributionf (t) = λe−λt [16], whereλ is a scaling parameter to
be found. Figure 6 shows a sample exponential distribution.An expo-
nential distribution exactly models systems in which service times are
memoryless—that is, the probability that a task will complete in the
next unit time is independent of how long the task has been running.
However, not all systems have memoryless service times. Even in sys-
tems with other service time distributions, the exponential distribution
retains a useful property: because it is a monotonically decreasing func-
tion, the linking algorithm will assign the highest probability to causal
relationships between messages close to each other in time.Thus, the
exponential distribution works well even if its scaling factor is incorrect
or the system does not exhibit strictly memoryless service times.

We also consideredf (t) = λte−λt , a gamma distribution in whichα =
2. This gamma distribution assigns the highest probabilities to delays
near 1/λ, which causes the linking algorithm to produce more accurate
results ifλ is estimated correctly, but much worse results otherwise.

We use an independent exponential distribution for each B→C pair,
by estimating the average delaydB→C that B waits before sending a
message to C. The delay distribution scaling factorλB→C is equal to
1/dB→C.

Correctly determiningdB→C requires accurate knowledge of which
message caused which; thus, linking only approximatesdB→C and hence
λB→C. Linking estimatesdB→C as the average of the smallest delay pre-
ceding each message. That is, for each message B→C, it finds the latest
message into B that preceded it and includes that delay in theaverage. If
there is no preceding message withinx seconds, B→C is assumed to be
a spontaneous message and no delay is included. The value ofx should
be longer than the longest real delay in the trace. We usex = 2 sec for
the Coral and CoDeeN traces, butx = 100msfor the Slurpee trace. The
value ofx is user-specified, depends only on expected processing times,
and does not need to be a tight bound.

In the presence of high parallelism, the estimate for eachd may be
too low, because the true parent message may not be the most recent
one. However, because the exponential distribution is monotonically
decreasing, the ranking of possible parents for a message ispreserved
even whend andλ are wrong. It is possible to iterate over steps (1) and
(2) to improve the estimate ofλ, but linking does not currently do so.

Step 2: Finding and scoring parent messages
After estimatingλB→C for each communicating pair of nodes B→C, the
linking algorithm assigns each causal link a weight based onits delay.
The weight of the link between X→B and B→C in the example in Fig-
ure 5 is set to

f (t4− t1) = e−λB→C(t4−t1),

where(t4− t1) is the delay between the arrival of X→ B and the depar-
ture B→C. Additionally, B→C may not have been caused by any earlier
message into B, and instead might have been spontaneous. This pos-
sibility is given a weight equal to a link with delayy ·dB→C. y should
be a small constant; we usey = 4. A largery instructs the algorithm to
prefer longer paths, while a smallery generates many short paths that
may be suffixes of correct paths. Spontaneous action is the most likely
choice only when there are no messages into B within the lasty ·dB→C
time. Figure 6 shows the weights assigned to all three possible parents of
B→ C, as well as the weight assigned to the possibility that it occurred
spontaneously.

Once all of the possible parents for this B→C message have been
enumerated, the weights of their links are normalized to sumto 1. These
normalized weights become the probability for each link. Figure 7 shows
the possible parents for the B→C and B→D calls, with their assigned
probabilities.

Hosts or processes that were not traced result innil timestamps in the
reconciled trace. That is, if node A was traced and B was not, then A→B
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Figure 7: Possible-parent trees for the messages in Figure 5.

messages will be present with send timestamps but not receive times-
tamps, and B→A messages will have only receive timestamps. Both
estimatingdB→A and assigning possible parents to B→A rely on having
timestamps at both nodes. In this case, we use A’s timestampsin place
of B’s and only allow causality back to the same node: A→B→A. This
assumption allows calls from or to nodes outside the traced part of the
system but avoids false causality between, e.g., several unrelated calls to
the same server.

After enumerating and weighting all possible parents for each mes-
sage, the linking algorithm uses these links to generate a list of the pos-
sible children for each message, preserving the link probabilities. This
inversion, shown in Figure 8, is necessary because causal path instances
are built from the root down.

Step 3: Building trees
The final step of the linking algorithm builds path instancesfrom the
individual links, then aggregates them into path patterns.That is, if
step (2) finds the relationships shown in Figure 4(a), it would generate
the two causal path instances shown in Figure 4(b), with the following
probabilities:

p1 = 0.8·0.9· (1−0.2) · (1−0.1) · (1−0.48)

≈ 0.270

p2 = 0.8·0.9· (1−0.2) · (1−0.1) ·0.48

≈ 0.249

Each causal link included contributes a factorp corresponding to its
probability. Each causal link omitted contributes a 1− p factor.

For each link in the tree (e.g., did A→B cause B→ C?), step (3) treats
it as probably-false, probably-true, or try-both, based on its probabil-
ity. Decisions are designated try-both if their probability is close to 0.5
or if they represent one of the most likely causes for a given message.
That is, in Figure 4, if A→B is the most likely cause of B→D, then
the A→B→D link will be made a try-both even though its probability
is not near 0.5, ensuring that at least one cause of B→D is considered
even if each possible cause has probabilityp < 0.5. The number of path
instances generated from a given root message isO(2k), wherek is the
number of ambiguous links from that message or its descendants that are
treated as try-both. Therefore,k must be limited to bound the running
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Figure 8: Possible-child trees formed from the trees in Figure 7.

time of linking.
Linking assigns a probability to each tree equal to the product of the

probabilities of the individual decisions—using(1− p) for decisions to
omit a causal link—made while constructing it. If a specific path pattern
is seen several times, we keep track of the total score (i.e.,the expected
number of times the pattern was seen) and the maximum probability.
Path patterns in the output are generally ordered by total score.

Big trees will have low scores because more decisions (more uncer-
tainty) goes into creating them. This behavior is expected.

5.2 Node and network latency
The latency at each node B is the time between the receive timestamp

of the parent message arriving at a node B and the send timestamp of the
child message that node B sends. Since both timestamps are local to B,
clock offset and clock skew do not affect node latency. For aggregated
trees, the linking algorithm calculates the average of thatnode’s delays
at each instance of the tree, weighted by the probability of each instance.
In addition to the average, we optionally generate a histogram of delays
for each node in the tree.

The network latency of each message is the difference between its
send and receive timestamps. These timestamps are relativeto different
clocks (they come from LibSockCap logs at different hosts),so the re-
sulting latency includes clock offset and skew unless we estimate it and
subtract it out. We use a filter on the output of the linking algorithm
to approximate pairwise clock offset by assuming symmetricnetwork
delays, following Paxson’s technique [12]. For simplicity, we ignore
the effects of clock skew. As a result, our results hide clockoffset and
exhibit symmetric average delays between pairs of hosts.

5.3 Algorithm comparison
Our earlier work, Project 5 [1], presented two causal-path analysis al-

gorithms,nestingandconvolution. The nesting algorithm works only on
applications using call-return communication and can detect infrequent
causal paths (albeit with some inaccuracy as their frequency drops).
However, messages must be designated as either calls or returns and
paired before running the nesting algorithm. If call-return information
is not inherently part of the trace, as in the systems analyzed here, then
trying to guess it is error-prone and is a major source of inaccuracy.
Linking and nesting both try to infer the cause, if any, for each message
or call-return pair in the trace individually.

The nesting algorithm only uses one timestamp per message. It is
therefore forced either to ignore clock offset or to use fuzzy timestamp
comparisons [1], which only work when all clocks differ by less time
than the delays being measured. Since clocks are often unsynchronized—
PlanetLab clocks sometimes differ by minutes or hours—our approach
of using both send and receive timestamps works better for wide-area
traces.

The convolution algorithm uses techniques from signal processing,
matching similar timing signals for the messages coming into a node
and the messages leaving the same node. Convolution works with any
style of message communication, but it requires traces witha minimum
of hundreds of messages, runs much more slowly than nesting or linking,
and is inherently unable to detect rare paths. When we applied convo-
lution to Coral, it could not detect rare paths like DHT callsand could
not separate node processing times of interest from networkdelays and
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clock offset.
The linking and nesting algorithms both haveO(nlgn) running time,

determined by the need to sort messages in the trace by timestamp, but
both are dominated by anO(n) component for the traces we have tried.
The convolution algorithm requiresO( t

s lg t
s) running time, wheret is

the duration of the trace ands is the size of the shortest delays of in-
terest. In practice, convolution usually takes one to four hours to run,
nesting rarely takes more than twenty seconds, and linking takes five to
ten minutes but can take much less or much more given a non-default
number of try-both decisions allowed per causal-link tree.Linking and
nesting both requireO(n) memory because they load the entire trace into
memory, while convolution requires a constant amount of memory, typ-
ically under 1 MB. Our Project 5 paper [1] has more details fornesting
and convolution, while Section 6 has more details for linking.

6. RESULTS FOR PLANETLAB APPLICATIONS
In this section, we present some results from our analyses oftraces

from the CoDeeN and Coral PlanetLab applications. Table 2 presents
some overall statistics for these two traces.

6.1 Visualization of results

? ?

10.9 ms
64.7 ms

Client

?
?

48.7 ms
?

?

web6
51.7 ms

dns2

2.2 ms

Web Server (PU)
178.2 ms

Solid arrows show message paths, labeled one-way delays, when known.
Dotted arcs show node-internal delays between message events. Nodes
are labeled with name and total delay for node and its children.

Figure 9: Example of call-tree visualization.
For a given causal path pattern, we use a timeline to represent both

causality and time; for example, see Figures 10, 12, 13, and 14. Boxes
represent nodes and lines represent communication links; each node or
line is labeled with its mean delay in msec. If we do not have traces from
a node, we cannot distinguish its internal delay from network delays, so
we represent the combination of such a node and its network links as a
diamond, labeled with the total delay for that combination.Time and
causality flow left to right, so if a node issues an RPC call, itappears
twice in the timeline: once when it sends the call, and again when it
receives the return.

These timelines differ from the call-tree pictures traditionally used to
represent system structure (for example, Figure 1 in [19] and Figure 1
in [7], or the diagrams in our earlier work [1]) but we found ithard to
represent both causality and delay in a call-tree, especially when com-
munication does not follow a strict call-return model. Magpie [2] also
uses timelines, although Magpie separates threads or nodesvertically,
while we only do so when logically parallel behavior requires it.

It is possible to transform the timeline in Figure 10 to a calltree,
as in the hand-constructed Figure 9, but this loses the visually helpful
proportionality between different delays.

To avoid unreadably small fonts, we use short code names in the time-
lines instead of full hostnames. Table 3 provides a translation.

6.2 Characterizing causal paths
Our tools allow us to characterize and compare causal path patterns.

For example, Figure 10 and Figure 12 show, for Coral and CoDeeN
respectively, causal path patterns that include a cache miss and a DNS

Code name Hostname
A&M planetlab2.tamu.edu
A&T CSPlanet2.ncat.edu
CMU planetlab-2.cmcl.cs.cmu.edu
CT planlab2.cs.caltech.edu
How nodeb.howard.edu
MIT planetlab6.csail.mit.edu
MU plnode02.cs.mu.oz.au
ND planetlab2.cse.nd.edu
PU planetlab2.cs.purdue.edu
Pri planetlab-1.cs.princeton.edu
Ro planet2.cs.rochester.edu
UCL planetlab2.info.ucl.ac.be
UVA planetlab1.cs.virginia.edu
WaC cloudburst.uwaterloo.ca (Coral DHT process)
WaP cloudburst.uwaterloo.ca (Proxy process)
cl Any client
dnsN some DNS server
lo local loopback
webN some Web origin server

Table 3: Code names for hosts used in figures.

lookup. One can see that CoDeeN differs from Coral in its use of two
proxy hops (described in [19] as a way to aggregate requests for a given
URL on a single CoDeeN node).

A user of our tools can see how overall system delay is broken down
into delays on individual hosts and network links. Further,the user can
explore how application structure can affect performance.For example,
does the extra proxy hop in CoDeeN contribute significantly to client
latency?

Note that we ourselves are not able to compare the end-to-endper-
formance of Coral and CoDeeN because we do not have traces made at
clients. For example, one CDN might be able to optimize client network
latencies at the cost of poorer server load balancing.

6.3 Characterizing node delays
When looking for a performance bug in a replicated distributed sys-

tem, it can be helpful to look for large differences in delay between paths
that should behave similarly. Although we do not believe there were any
gross performance problems in either CoDeeN or Coral when our traces
were captured, we can find paths with significantly differentdelays. For
example, Figure 13 shows two different but isomorphic cache-miss paths
for CoDeeN (these paths do not require DNS lookups). The origin server
delay (a total including both network and server delay) is 321 ms in the
top path but only 28 ms in the bottom path. Also, the proxies inthe
top path show larger delays when forwarding requests than those in the
bottom path. In both cases, when a proxy forwards a response,it does
so quite rapidly.

Node Mean Number of
name delay samples

CoDeeN
planet1.scs.cs.nyu.edu 0.29 ms 583
pl1.ece.toronto.edu 1.47 ms 266
planlab1.cs.caltech.edu 0.59 ms 247
nodeb.howard.edu 4.86 ms 238
planetlab-3.cmcl.cs.cmu.edu 0.20 ms 53

Coral
planet1.scs.cs.nyu.edu 4.84 ms 6929
planetlab12.Millennium.Berkeley.EDU 6.16 ms 3745
planetlab2.csail.mit.edu 5.51 ms 1626
CSPlanet2.chen.ncat.edu 0.98 ms 987
planetlab14.Millennium.Berkeley.EDU 0.91 ms 595

Table 4: Examples of mean delays in proxy nodes.

Similarly, we can focus on just one role in a path and compare the
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Number of Trace Number of Number of
Trace Date messages duration hosts processes

CoDeeN Sept. 3, 2004 4,702,865 1 hour 115 230
Coral Sept. 6, 2004 4,246,882 1 hour 68 168

Table 2: Trace statistics
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Figure 10: Linking algorithm output for a Coral miss path wit h DNS lookup, delays in ms.
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Figure 11: Node delay distributions (CoDeeN)

delays at the different servers that fill this role. Table 4 shows mean
delays in proxies for cache-hit operations (the causal pathpatterns in
this case are trivial).

The message linking algorithm has enough information to generate
the entire distribution of delays at a node or on a link ratherthan just the
mean delay. Figure 11 shows the delay distributions for cache-hit oper-
ations on five nodes. The nodes in this figure are also listed inTable 4,
which shows mean delay values for four of the nodes between 0 and
2 ms. The distribution for nodeb.howard.edu shows two peaks, includ-
ing one at 18 ms that strongly implies a disk operation and corresponds
with this node’s higher mean delay in the table.

6.4 DHT paths in Coral
Coral uses a distributed hash table (DHT) to store information about

which proxy nodes have a given URL and to store location information
about clients.1 Whenever a proxy does not have a requested web object
in its local cache, it searches the DHT to find other nodes thathave
the object, and it inserts a record into the DHT once it has retrieved
the object. Figure 14 shows one such DHT call in Coral. The sets of
three parallel calls in this figure reflect Coral’s use of three overlapping
DHTs at different levels of locality. From the figure, it is also clear that
Coral’s DHT is iterative: each hop in a DHT path responds directly to
the requester rather than forwarding the query to the next hop.

6.5 Algorithm runtime costs
We measured the CPU time and memory required to run the reconcil-

iation and message linking algorithms on several traces. Table 5 shows
that these costs are acceptable. The CPU time requirements are higher
than the nesting algorithm but lower than the convolution algorithm [1].
The memory requirements reflect the need to keep the entire trace in
memory for both reconciliation and linking. We expect the running time
to beO(nlgn) for both reconciliation and linking because both require
sorting. However, theO(n) portions of each program dominate the run-
ning time. The running time for linking is heavily dependenton the

1The Coral authors call their structure adistributed sloppy hash ta-
ble (DSHT) to emphasize design decisions they made to improve load
balancing.

pruning parameters used, particularly the number of try-both bits allo-
cated per link probability tree. Memory requirements areO(n) for both
programs.

6.6 Metrics for sorting path patterns
The linking algorithm produces two scores for each path pattern it

identifies: a raw count of the number of instances and expected number
of instances believed to be real. The latter is the sum of the probabilities
of all instances of the path pattern. Sorting by the expectednumber of
instances is generally the most useful, in that the patternsat the top of
the list appear many times, have high confidence, or both. Highlighting
paths that appear many times is useful because they are whereoptimiza-
tions are likely to be useful. Highlighting paths with high confidence
helps suppress false positives (i.e., patterns that are inferred but do not
reflect actual program behavior).

Two additional, composite metrics are: (1)expectation÷ count and
(2) expectation÷

√
count. The first is the average probability of in-

stances of each path, and it favors high-confidence paths. The second
captures the notion that seeing a path many times increases the confi-
dence that it is not a false positive, but not linearly.

7. ENTERPRISE APPLICATIONS
Although this paper focuses on wide-area applications, previous work

on black-box debugging using traces [1, 2, 4] focused on LAN applica-
tions. We had the opportunity to try our tools on traces from amoder-
ately complex enterprise application, Slurpee2. We do not present de-
tailed results from Slurpee, since LAN applications are notthe focus
of the paper and space does not permit an adequate treatment.How-
ever, Slurpee is the one system on which we have used linking,nesting,
and convolution. Further, we learned several things applying WAP5 to
Slurpee that are applicable to wide-area applications.

The Slurpee system aids in supporting customers of a computer ven-
dor. It handles reports of incidents (failures or potentialfailures) and
configuration changes. Reports arrive via the Internet, andare passed
through several tiers of replicated servers. Between each tier there are
firewalls, load balancers, and/or network switches as appropriate, which
means that the component servers are connected to a variety of distinct
LANs.

Since we could not install LibSockCap on the Slurpee servers, packet-
sniffing was our only option for tracing Slurpee and had the advantage
of non-invasiveness. However, we found the logistics significantly more
daunting than we expected. Packet sniffing systems are expensive, and
we could not allocate enough of them to cover all packet paths. They
also require on-site staff support to set them up, configure switch ports,
initiate traces, and collect the results. In the future, these tasks might be
more automated.

2Slurpee is not its real name.
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Figure 12: Linking algorithm output for a CoDeeN miss path with DNS lookup, delays in ms.
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Figure 13: Linking algorithm output for two CoDeeN miss paths, delays in ms.

We obtained simultaneous packet traces from five sniffers, one for
each of the main LAN segments behind the main firewall. We treated
each packet as a message, and applied a variant of our reconciliation
algorithm (see Section 4) to generate a unified trace.

The five sniffers did not have synchronized clocks when the traces
were made. Clock offsets were on the order of a few seconds. Since we
had two copies of many packets (one sniffed near the sender, one sniffed
near the receiver), we developed an algorithm to identify which sniffer’s
clock to use as the sender or receiver timestamp for each server (node)
in the trace. If the sniffer is on the same switch as a node, then every
packet to or from that node appears in that sniffer’s traces.If we did not
sniff the node’s switch, then we chose the sniffer that contained the most
packets to or from the node.

We applied all three of our causal-path analysis algorithmsto the
Slurpee trace. The Slurpee trace conforms to call-return semantics but
does not contain the information needed to pair calls with returns. We
tried several heuristics for pairing calls and returns, butthe inaccuracy
in this step limited the usefulness of the nesting algorithm. Convolution
does not require call-return pairing, but it does require a large number
of instances of any given path. Several of the Slurpee paths occurred
infrequently and were not detected by convolution. Some of the Slurpee
hosts were only visible in the trace for a few seconds and so did not send
or receive enough messages to appear in any path detected by convolu-
tion. Linking was able to detect both common and rare paths and was
not hampered by the lack of call-return pairing information.

7.1 Network address translation
In analyzing the Slurpee system, we found instances of network ad-

dress translation, which did not appear in the Coral or CoDeeN traces
but which might appear in other wide-area systems.

Network address translation (NAT) [6] allows network elements to
change the addresses in the packets they handle. In Slurpee,a load bal-
ancer uses NAT to redirect requests to several server replicas. Wide-area
systems often use NAT to reduce the pressure on IPv4 address space
assignments. NAT presents a problem for message-based causality anal-
ysis, because the sender and receiver of a single message usedifferent
“names” (IP addresses) for one of the endpoints.

We developed a tool to detect NAT in packet traces and to rewrite
trace records to canonicalize the translated addresses. This tool searches
across a set of traces for pairs of packets that have identical bodies and
header fields, except for IP addresses and headers that normally change
as the result of routing or NAT. While small numbers of matches might
be accidental (especially for UDP packets, which lack TCP’spseudo-
random sequence numbers), frequent matches imply the use ofNAT.
The tool can also infer the direction of packet flow using the IP header’s
Time-To-Live (TTL) field, and from packet timestamps if we can correct
sufficiently for clock offsets.

We have not tested this tool on packet traces from a wide-areasystem,
but we believe it would work correctly. However, because LibSockCap
does not capture message contents and cannot capture packetheaders,

LibSockCap traces do not currently contain enough information to sup-
port this tool.

8. RELATED WORK
We divide related work into three categories: trace-based techniques

for causality and performance analysis, and other interposition-based
tools.

8.1 Trace-based analysis tools
Our previous work on Project 5 [1], which we have already described

earlier in this paper, is most closely related work to WAP5. This ear-
lier work ignored many practical issues in gathering traces, particularly
overlapping traces from multiple sniffers, and reconciling them into a
single trace for analysis. Also, Project 5’s nesting algorithm depends
on call-return semantics and is too sensitive to clock offsets, while the
convolution algorithm requires long traces and cannot infer causality in
the presence of highly variable processing delays.

Magpie [2] complements our work by providing a very detailedpic-
ture of what is happening at each machine, at the cost of needing to un-
derstand the applications running at each machine. Magpie uses Event
Tracing for Windows, built into the Windows operating system, to col-
lect thread-level CPU and disk usage information. Magpie does not
require modifying the application, but does require “wrappers” around
some parts of the application. Their algorithms also require an application-
specificevent schema, written by an application expert, to stitch traced
information into request patterns.

Several other systems require instrumented middleware or binaries.
Pinpoint [4] focuses on finding faults by inferring them fromanomalous
behavior. Pinpoint instruments the middleware on which an applica-
tion runs (e.g., J2EE) in order to tag each call with a requestID. The
Distributed Programs Monitor (DPM) [10] instruments a platform to
trace unmodified applications. DPM uses kernel instrumentation to track
the causality between pairs of messages rather than inferring causality
from timestamps. Paradyn [11] uses dynamic instrumentation to cap-
ture events and location bottlenecks, but it does not organize events into
causal paths. Finally, some of the most invasive systems, such as Net-
Logger [14] and ETE [8], find causal paths in distributed system by rely-
ing on programmers to instrument interesting events ratherthan inferring
them from passive traces. Pip [13] requires modifying, or atleast recom-
piling, applications but can extract causal path information with no false
positives or false negatives. Because of the higher information accuracy,
Pip can check the extracted behavior against programmer-written tem-
plates and identify any unexpected behavior as possible correctness or
performance bugs.

8.2 Interposition-based tools
Several other systems use interposition. Trickle [15] useslibrary in-

terposition to provide user-level bandwidth limiting. ModelNet [18]
rewrites network traffic using library interposition to multiplex emu-
lated addresses on a single physical host. Systems such as Transparent
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Figure 14: Linking algorithm output for a DHT call in Coral, d elays in ms.

Number of Trace Reconciliation Message Linking
Trace messages duration CPU secs MBytes CPU secs MBytes

CoDeeN 4,702,865 1 hours 982 697 730 1354
Coral 4,246,882 1 hours 660 142 517 1148

Table 5: Runtime costs for analyzing several traces

Result Caching [17] and Interposition Agents [9] used debugging in-
terfaces such asptrace or /proc to intercept system calls instead of
library interposition. Library interposition is simpler and more efficient,
but it requires either dynamically linked binaries or explicit relinking of
traced applications.

9. CONCLUSIONS
We have developed a set of tools called Wide-Area Project 5 (WAP5)

that helps expose causal structure and timing in wide-area distributed
systems. Our tools include a tracing infrastructure, whichincludes a
network interposition library called LibSockCap and algorithms to rec-
oncile many traces into a unified list of messages; a message-linking al-
gorithm for inferring causal relationships between messages; and visual-
ization tools for generating timelines and causal trees. Weapplied WAP5
to two content-distribution networks in PlanetLab, Coral and CoDeeN,
and to an enterprise-scale incident-monitoring system, Slurpee. We ex-
tracted a causal behavior model from each system that matched pub-
lished descriptions (or, for Slurpee, our discussions withthe maintain-
ers). In addition, we were able to examine the performance ofindividual
nodes and the hop-by-hop components of delay for each request.
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