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ABSTRACT

Wide-area distributed applications are challenging toudelmptimize,
and maintain. We present Wide-Area Project 5 (WAP5), whialisao
make these tasks easier by exposing the causal structuoenofignica-
tion within an application and by exposing delays that impjtlenecks.
These bottlenecks might not otherwise be obvious, with dhauit the
application’s source code. Previous research projects pasented al-
gorithms to reconstruct application structure and theesponding tim-
ing information from black-box message traces of locahaestems. In
this paper we present (1) a new algorithm for reconstruajyglication
structure in both local- and wide-area distributed systd®)san infras-
tructure for gathering application traces in PlanetLaly €3) our ex-
periences tracing and analyzing three systems: CoDeeN aral, Gvo
content-distribution networks in PlanetLab; and Slur@eeenterprise-
scale incident-monitoring system.

Categories and Subject Descriptors: D.2.5[Software Engineering]:
Testing and Debugging+distributed debugging, testing tools

General terms: Algorithms, Performance, Measurement

Keywords: Performance debugging, black box systems, distributed sys
tems, performance analysis

1. INTRODUCTION

Wide-area distributed systems are difficult to build andldefbe-
cause traditional debugging tools do not scale acrosspiaiftrocesses,
machines, and administrative domains. Compared to |oea-dis-
tributed systems, wide-area distributed systems intredwew sources
of delays and failures, including network latency, limitedndwidth,
node unreliability, and parallel programming. Furtherenathe sheer
size of a wide-area system can make it daunting to find andgdebu
derperforming nodes or to examine event traces. Often,rgnogers
have trouble understanding the communications structuaecomplex
distributed system and have trouble isolating the spedficces of de-
lays.

In this paper, we present the Wide-Area Project 5 (WAPS5)esyst
set of tools for capturing and analyzing traces of wide-alis&ributed
applications. The WAP5 tools aid the development, optitiora and
maintenance of wide-area distributed applications byakwg the causal
structure and timing of communication in these systems. yTtigh-
light bottlenecks in both processing and communication. niapping
an application’s communication structure, they highlighien an appli-
cation’s data flow follows an unexpected path. By discowgtite timing
at each step, they isolate processing or communicatiompbists
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Figure 1: Example causal path through Coral.
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Figure 2: Schematic of our tool chain.

We are focusing on applications running on PlanetLab [3haes the
best collection of widely distributed applications for whiresearch ac-
cess is feasible. In particular, we have applied our toalsé@oDeeN [19]
and Coral [7] content-distribution networks (CDNs). WARSstructs
causal structures, such as the one shown for Coral in Figunénith
matches a path described by Figure 1 in a paper on Coral [7].

Our tool chain consists of four steps, depicted in FigureigstFour
dynamically linked interposition library captures onect&eaof socket-
API calls per application process on each participatinghimec Sec-
ond, we reconcile the socket-API traces to form a singlestmith one
record per message containing both a sent and a receivestaime.
These timestamps reflect the clocks at the sender and receahines,
respectively, and are used to quantify and compensate dok ckew
and to measure network latency. Third, we run our causaliglysis
algorithm on the reconciled trace to find causal paths thrdhg appli-
cation, like the one in Figure 1. Finally, we render the chpsths as
trees or timelines.

In the space of tools that analyze application behaviordoigpmance
debugging, our approach is among the least invasive andswmrkhe
largest scale of systems: wide-area distributed systentiser@ausal-
path analysis tools differ in their invasiveness or in thelsof systems
they target. Our earlier work [1], known &soject § targets heteroge-
neous local-area distributed systems and is minimallysiweabecause
it works using only network traces. Magpie [2] and Pinpo#it target
(mostly) homogeneous local-area distributed systems aqdine spe-
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cific platforms with the appropriate logging capabilitiés.some cases,
Pinpoint also requires the ability to change message fanzz®@M [10]
traces single-computer systems using an instrumenteelkePip [13]
supports wide-area systems but requires manual annctaganinstru-
mented platform, or both. We discuss related work furthe3eation 8.
This paper makes the following contributions:
e A new causal-path inference algorithm, thessage-linking algo-

which contacts a second on its behalf, and so on. A recursideup
may return back through each intermediary, or it may returactly
along a shortcut from the destination node back to the client

With an iterative DHT, all of the necessary messages foryaisabf
causal paths starting at a particular node can be capturidtahode.
With a recursive or recursive-shortcut DHT, causal pathysisrequires
packet sniffing or instrumentation at every DHT node. Theadigm

rithm, that introduces support for wide-area systems. Some of the presented in this paper handles all three kinds of DHT.

new features of linking also make it easier to analyze lecak
systems. We provide a full comparison with our previous algo
rithms [1] in Section 5.3.

e A discussion of several previously unaddressed problentis wi
causal path analysis, including naming issues, DHT iswiele-
area network latencies, clock skew, and network addressléa
tion.

e Results from applying our tools to three real systems, tHaged
and Coral CDNSs running on PlanetLab, and Slurpee, an ergerpr
scale incident-monitoring system.

In the next section, we define the problem we are solving mere e
plicitly. We then describe the three main tools in our apphavhich
perform trace capture, trace reconciliation, and caugalqaalysis over
the trace. Finally, we present results from three systems.

2. PROBLEM DEFINITION

In this section, we define the problem we are solving. We thelu
a description of the target applications, discussion ofesaistributed
hash table (DHT) issues, definitions of our terminology fomenuni-
cation between components, our model of causality, andaegsues
related to naming of components.

2.1 Target applications

Our primary goal is to expose the causal structure of comoatioin
within a distributed application and to quantify both presieag delays
inside nodes and communication (network) delays. In thjgepawe
specifically focus on wide-area distributed systems (ahdratystems)
where the network delays are non-negligible. We furtheu$oan Plan-
etLab applications because we can get access to them dasiliever,
nothing in our approach requires the use of PlanetLab.

We aim to use as little application-specific knowledge asitds and
not to change the application. We can handle applicatiorase/Bource
code is unavailable, whose application-level messagedtarrare un-
known, and, in general, withoatpriori information about the design of
the application.

Our tools can handle distributed systems whose “nodes” apange
of granularities ranging from entire computers down to Engreads,
and whose communication paths include various networlopod$ and
intra-host IPC. We aim to support systems that span multiptéemen-
tation frameworks; for example, a multi-tier applicatiohave one tier
is J2EE, another is .Net, and a third is neither.

We currently assume the use of unicast communications anakswe
sume that communication within an application takes thenfof mes-
sages. It might be possible to extend this work to analyzeicast
communications.

2.2 DHT issues

Several interesting distributed applications are basdol$fis. There-
fore, we developed some techniques specifically for hagdid T-based
applications.

DHTs perform lookups either iteratively, recursively, ecursively
with a shortcut response [5]. In an iterative lookup, theenpdrforming
the query contacts several remote hosts (norn@(lign) for systems
with n total hosts) sequentially, and each provides a referrdgmext.
In a recursive lookup, the node performing the query costane host,

DHTSs create an additional “aggregation” problem that weedeftil
Section 2.5.1.

2.3 Communications terminology

Networked communication design typically follows a lay&ggchi-
tecture, in which the protocol data units (PDUs) at one lagight be
composed of multiple, partial, or overlapping PDUs at a loveger.
Sometimes the layer for meaningfully expressing an apipdics causal
structure is higher than the layer at which we can obtairesaEor ex-
ample, in order to send a 20 KB HTTP-level response messagieba
server might break it into write() system call invocatioraséd on an 8
KB buffer. The network stack then breaks these further irt60tbyte
TCP segments, which normally map directly onto IP packetswhich
might be fragmented by an intervening router.

We have found it necessary to clearly distinguish betweessages at
different layers. In this paper, we use the tgratketto refer to an IP or
UDP datagram or a TCP segment. We nsessagéeo refer to data sent
by a single write() system call or received by a single readg refer
to a large application-layer transfer that spans multipéssageas afat
message Fat messages require special handling: we combine adjacen
messages in a flow into a single large message before beginausal
analysis. Conversely, several sufficiently small appiicatayer units
may be packed into a single system call or network packet;atopols
that allow pipelining. In the systems analyzed here, suphljiing does
not occur. In systems where pipelining is present, our tbairc would
see fewer requests than were really sent but would still faucality.

2.4 Causality model

We consider message A to have caused message B if message A is
received by node X, message B is sent by node X, and the logioda
X is such that the transmission of B depends on receiving Aoun
current work, we assume that every message B is either cénysede
incoming message A or is spontaneously generated by nodehiX. T
assumption includes the case where message A causes thatijenef
several messagés, By, ..., Bp.

An application where one message depends on the arrival oy ma
messages (e.g., a barrier) does not fit this model of capsaMAP5
would attribute the outgoing message to only one—probatsfinal—
incoming message. Additionally, if structure or timing ofausal path
pattern depends on application data inside a message, WiARBew
each variation as a distinct path pattern and will not dedagtcorrela-
tion between the inferred path instances and the contemtes$ages.

We cannot currently handle causality that involves asyorobus timers
as triggers; asynchronous events appear to be spontaregbes than
related to earlier events. This restriction has not beerobl@m for the
applications we analyzed for this paper. We also cannotctiétat a
node is delayed because it is waiting for another node tasela lock.

2.5 Naming issues

Our trace-based approach to analyzing distributed sysexpgses
the need for multiple layers of naming and for various naraedations.
Clear definitions of the meanings of various names simpligy/ design
and explanation of our algorithms and results. They alsp heldefine
how to convert between or to match various names.

Causal path analysis involves two categories of nhamed tshjeom-
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putational nodes and communication flow endpoints. Nodeghintie
named using hostnames, process IDs, or at finer grains. Ersipaght
be named using IP addresses, perhaps in conjunction withof PP
ports, or UNIX-domain socket pathnames. These multipleewalead
to several inter-related challenges:

e Which level of name to use While we want our tools to avoid in-
corporating application-specific knowledge, thesemay require
some knowledge of the application. In particular, the useruo
tools may have to decide whether to treat a host as a singke nod
or as a collection of process-level nodes. The processVesww
might add useful detail if each process has a distinct ralét o
might just add confusion if processes on a host are integgtan
able, as in servers built using a process pool.

The selection of naming granularity interacts with the chodf
tracing technology. Packet sniffing, the least invasiveitigap-
proach, makes it difficult or impossible to identify processather
than hosts. Use of an interposition library, such as the andav
scribe in Section 3, allows process-level tracing.

How to match node names and endpoint namesA host might
include several process nodes and multiple communication e
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possible to aggregate the results based omdieeof a node rather than
its name For example, Coral and CoDeeN have thousands of clients
making requests; trees starting at one client would not atiynbe ag-
gregated with trees starting at another. As another exarfjgare 3(a)
shows two causal paths with the same shape but differentdmosss. In
the top path, Host D fills the role of the first-hop proxy, andstB fills
the role of the second-hop proxy; in the other path, Host Biésfirst-
hop proxy and and Host C is the second-hop proxy. What we riight
to see instead is the aggregated path in Figure 3(b), whigfeggtes the
clients, first-hop, and second-hop proxies. Of course, taggregated
paths should still be available, in case a performance proldfflicts
specific nodes rather than a specific task.

Currently, our code aggregates clients, but we have notrgpter
mented aggregation across servers. To aggregate cliemtdesignate
each TCP or UDP port d&edor ephemerabnd each node as a client
or a server. A port is fixed if it communicates with many othertgp.
For example, a node making a DNS request will allocate a sopoct
dynamically (normally either sequentially or randomlwt the destina-
tion port will always be 53. Thus, causal path analysis disc®that 53
is a fixed port because it talks to hundreds or thousands ef qibrts.

points. For example, a Web proxy process could accept HTTP A node is considered a server if it uses fixed ports at least,omed
requests on port 8090 and send forwarded requests usingea ser a client otherwise. Our algorithm replaces all client nodeas with a
of ephemeral port numbers; in this case, all these conmecke- single string “CLIENT” and replaces all ephemeral port nengbwith an
long to one process. However, the same host might run both aasterisk before building and aggregating trees. Thusretke identical
Web server and an FTP server, in which case the two different trees beginning at different clients with different epheaheource-port

server ports correspond to distinct processes. Using arpiosi-

tion library, we capture enough information to match endfmto
processes; it is much harder using packet-sniffing.

How to find both ends of a path Whenever possible, we cap-
ture trace records at each host in a distributed system., Each
message within the system generates two trace recordst the a
sender and one at the receiver. In order to get both sender an

receiver timestamps for a message, we need to match up the two

trace records — in effect, finding a common name for each mes-
sage. This task is usually straightforward but can be caratd
by multihomed hosts, reordered or lost datagrams, or cléfekto
The distinction between node names and endpoint nhamessatlav
analysis of a single distributed application by using npldtitraces ob-
tained with several different techniques. For example, adcttrace
UNIX-domain socket messages using the interposition fijbemd si-
multaneously trace network messages using a packet sniffer
Table 1 shows the various names (the columns) captured bintewr
position library, and where they are used in our analysisinglede this
table to illustrate the complexity of name resolution; ityrze helpful
to refer to it when reading Sections 4 and 5.

2.5.1 Aggregation across multiple names

Causal path analysis aggregates similar path instancepath pat-
terns, presenting to the user a count of the instances édf@long with
average timing information. The simplest form of aggrematis com-
bining path instances with identical structure, i.e., ththsat involve ex-
actly the same nodes in exactly the same order. More advagugdga-
tion techniques look for isomorphic path instances th&operthe same
tasks via different nodes, perhaps for load balancing. W\itlaggrega-
tion, it is difficult to visualize how a system performs ovéravhere
the application designer thinks of an abstract series pkdferough an
application, causal path analysis finds a combinatorialosign of rare
paths going through specific nodes. Aggregation is pagfuimpor-
tant for DHTSs, which are highly symmetric and use an intardlty wide
variety of paths for reliability and load balancing. Aggatigg paths is
useful for finding performance bugs that are due to a desigroding
error common to all hosts.

Once causal path analysis has identified a set of isomorplhspit is

numbers can be aggregated.

3. TRACECOLLECTIONINFRASTRUCTURE

We now describe how we capture traces of inter-node comratioit
We wrote an interposition library, LibSockCap, to captuetwork and

Jnter-process communication. LibSockCap captures mdbktysame

information asstrace -e networkKi.e., a trace of all networking system

calls), plus additional needed information with much loweerhead.

The extra information is needed for reconciliation andudels finger-

prints of UDP message contents, the PID of peers connedtiogigh

a Unix socket, the peer name even whaeeptdoes not ask for it, the

local name bound wheoonnectis called, and the number assigned to

a dynamic listening port not specified wittnd. Further, LibSockCap

imposes less tharnu@of overhead per captured system call, while strace

imposes up to 60s of overhead per system call. Finally, LibSockCap
generates traces about an order of magnitude smaller tfzare st

LibSockCap traces dynamically linked applications on alaffprm
that supports library interposition vieD_PRELOAD. LibSockCap inter-
poses on the C library’s system call wrappers to log all se&ld activ-
ity, for one or more processes, on all network ports and atsbdIX-
domain sockets. For each call, LibSockCap records a tinmgstand
all parameters (as shown in Table 1), but not the messagerdsntin
addition, LibSockCap monitors calls fork so that it can maintain a
separate log for each process. On datagram sockets, itexdecds a
message checksum so that dropped, duplicated, and rednoeckets
can be detected.

There are several advantages to capturing network trafbcign li-
brary interposition rather than through packet sniffinghei on each
host or on each network segment.

e Logical message semanticsnessages are captured with the same
order and boundaries that the application sees, ratheaftenrthe
network potentially fragments or combines them.

e Finer granularity : LibSockCap attributes communication to in-
dividual processes rather than to whole hosts. Also, LikSap
can capture UNIX-domain sockets, while sniffing cannot.

o Efficiency: LibSockCap adds less overhead than running a sniffer
on the same host, as is necessary on PlanetLab, becausgiit run
the memory space of the processes being traced and so does not



Socket API parameters Other captured information
both ends: socket file peer
(IP addr,port) path descriptor  length hostname PID  PID  checksum timestamp

trace file header C C C
new connection: TCP C C C
new connection: UDP or raw IP C C C
new connection: UNIX domain C C C C
message: TCP or UNIX domain C C C
message: UDP or raw IP C C C C Cc
reconciliation: matching send & rcv recs ] U ] ] ] ]

causal analysis (message linking) U U U
aggregating nodes U U

Table 1: Where different naming information is captured (C) or used (U).

Host D » Host B » Host D

2nd proxy
Host B » Host C » Host B

2nd proxy

(a) unaggregated paths

Any host as Any host as Any host as » Any host as Any host as
Client 1st proxy 2nd proxy 1st proxy Client

(b) corresponding aggregated path

Figure 3: Example of aggregation across multiple names

require context switches or buffer copies to record message
Interposition does have disadvantages relative to sniffing

e No control packets only sniffing can capture network control
messages. However, our work focuses on the causal relaijens
between logical messages, not control messages.

e Lack of packet boundaries, fragments, and retransmissions
problems arising in the network stack or in the network, sash
excessive fragmentation or retransmission, are not esiblour
interposition library.

e Timestamps added by user processany delays introduced by
the network stack happen after LibSockCap timestamps tet ev
and get attributed to network delay.

The advantages are significant enough that even in envinaismdere
sniffing is feasible, we prefer to use LibSockCap.

3.1 Runtime overhead

To verify that LibSockCap imposes negligible overhead anappli-
cations being traced, we ran Seda’s HttpLoad [20] using Ja¥#4 01
against Apache 1.3.1. Both the client and the server were2ddi&Hz
Pentium 4 Xeon systems running Linux 2.4.25. LibSockCap iad
measurable effect on throughput or on average, 90th-pieseor max-
imum request latency for any level of offered load. Howetleg, server
CPU was not saturated during this benchmark, so LibSockGghtm
have more impact effect on a CPU-bound task.

We measured the absolute overhead of LibSockCap by congpiuen
time to make read/write system calls with and without inbsipon ac-
tive, using the server described above. LibSockCap adds &degusof
overhead to file reads and writes, which generate no logesnttiOis
to TCP reads; 1.Q&sto TCP writes; and 0.4&to UDP writes. In our
benchmark, Apache made at most 3,019 system calls per sezxqunal
to an overhead of about 0.3% of one CPUr's total cycles.

3.2 Deployment experience

To capture the traces used for our experiments, we sent tRESap
sources to the authors of Coral and CoDeeN. Both reportek that
they used their existing deployment mechanisms to instabackCap

on all of their PlanetLab nodes. After the processes ran atidoted
traces for a few hours, they removed LibSockCap, retrickedraces to
a single node, and sent them to us.

While LibSockCap is more invasive than packet sniffing (iatth
requires additional software on each node), packet sniffingore lo-
gistically challenging in practice, as we discuss in Sectio

4. TRACE RECONCILIATION

The trace reconciliation algorithm converts a set of pecpss traces
of socket activity (both network and inter-process messpgigea single,
more abstract, trace of inter-node messages. This algoiiticludes
translation from socket events to flow-endpoint names auig mames.
The output is a trace containing logical message tuples ®ffdahm
(sender-timestamp, sender-endpoint, sender-node veeg¢gnestamp,
receiver-endpoint, receiver-node).

Name translation: In the LibSockCap traces, easbndor recvevent
contains a timestamp, a size, and a file descriptor. Redatoil con-
verts each file descriptor to a flow-endpoint hame. With UNbBfnzin
and TCP sockets, we can easily find the flow-endpoint name @ X
path or<IP address, port pair) in prior connect accept or bind API
events in the trace. File descriptors for datagram (UDPwr P sock-
ets, however, may or may not be bound to set source and déstina
addresses. If not, the remote address is available fronsehdtoor
recvfromparameter and we use the host’s public IP address or the loop-
back address as the local address.

Timestamps: We include the timestamps from both the sender and
receiver traces in the final trace. With both timestampss imple
to obtain the network latency of each message, as we desoribec-
tion 5.2. Whenever we have only one timestamp for a messagaifse
we only sniffed one endpoint), we us@ for the other timestamp.

5. THE MESSAGE LINKING ALGORITHM

Causal path analysis looks for causal relationships inagedl mes-
sages produced by trace reconciliation. Its output is @&ctidin of path
patterns, each annotated with one or more scores indicatipgrtance.
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Figure 5: Three calls into B that might have caused B-C.

Message linkingor linking for short, is a new causality analysis algo-
rithm for distributed communication traces. Linking wonkgth both
local-area and wide-area traces, which may be captured ugi$ock-
Cap, a sniffer, or other methods. We compare linking witteottausal
path analysis algorithms at the end of this section.

5.1 Algorithm description

For each message in the trace, linking attempts to deterihihe
message is spontaneous or is caused by another messageyloases,
the cause is ambiguous, in which case linking assigns a pildaldor
thelink between th@arentmessage into the node and ttiéld message
out of the node. The probabilities of the links for all paremdssages to
a given child message sum to one.

Linking then constructs path instances from these links asgigns
each path instance a confidence score that is the produ¢odtia link
probabilities in the tree. The total score across all instarof a given
path pattern represents the algorithm’s estimate of thebeurof times
the pattern appeared in the trace. If a link is sufficientlyamous (e.g.,
if it has a probability near 0.5), two path instances will béthone with
the link and one without it. Figure 4 shows an example linkoatality
tree and the causal path instances it generates. The trhe tafttshows
all of the messages that might have been caused, directigioectly, by
one specific A~B message, with a probability assigned to each possible
link. From this tree, the linking algorithm generates the twausal path
instances on the right, each with a probability based on dwsibns
made to form it. Here, two path instances are generated beche link
between A-B and B—F has probability close tp = 0.5.

In broad terms, the linking algorithm consists of three stéf) esti-
mating the average causal delay for each node, (2) detergnassible
parents for each message, and (3) building path instancethan ag-
gregating them into path patterns. We describe the algorithmore
detail in the sections that follow.

Step 1: Estimating the average causal delay

The probability of each link between a parent message intmdB a
child message out of B is a function of how well it fits the cduds
lay distribution. Causal delays represent the servicegiateach node.
Therefore, as is common in system modeling, we fit them to ao-ex
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nential distributionf (t) = Ae~M[16], where) is a scaling parameter to
be found. Figure 6 shows a sample exponential distributfomexpo-
nential distribution exactly models systems in which sggvimes are
memoryless—that is, the probability that a task will conplan the
next unit time is independent of how long the task has beeningn
However, not all systems have memoryless service timesn Eveys-
tems with other service time distributions, the exponémtistribution
retains a useful property: because it is a monotonicallyedesing func-
tion, the linking algorithm will assign the highest probihito causal
relationships between messages close to each other in Times, the
exponential distribution works well even if its scaling taicis incorrect
or the system does not exhibit strictly memoryless senitnes.

We also considereti(t) = Ate A, a gamma distribution in which =
2. This gamma distribution assigns the highest probadslito delays
near J/A, which causes the linking algorithm to produce more aceurat
results ifA is estimated correctly, but much worse results otherwise.

We use an independent exponential distribution for eaek(Bpair,
by estimating the average deldy_.c that B waits before sending a
message to C. The delay distribution scaling fadtgr.c is equal to
1/dBﬁc.

Correctly determiningdg_.c requires accurate knowledge of which
message caused which; thus, linking only approximdges: and hence
Ag_c. Linking estimateslz .c as the average of the smallest delay pre-
ceding each message. That is, for each messag€ Bt finds the latest
message into B that preceded it and includes that delay aMrage. If
there is no preceding message witkiseconds, B-C is assumed to be
a spontaneous message and no delay is included. The vatshotild
be longer than the longest real delay in the trace. Wexuse sec for
the Coral and CoDeeN traces, but 100msfor the Slurpee trace. The
value ofx is user-specified, depends only on expected processing,time
and does not need to be a tight bound.

In the presence of high parallelism, the estimate for ehamay be
too low, because the true parent message may not be the noest re
one. However, because the exponential distribution is rtoomcally
decreasing, the ranking of possible parents for a messgyessrved
even wherd andA are wrong. It is possible to iterate over steps (1) and
(2) to improve the estimate &f but linking does not currently do so.

Step 2: Finding and scoring parent messages

After estimating\g_.c for each communicating pair of nodes-£C, the
linking algorithm assigns each causal link a weight basedwdelay.
The weight of the link between%B and B—C in the example in Fig-
ure 5is setto

flty—ty) = g Mec(ta—ty) 7

where(ty —t1) is the delay between the arrival ofX B and the depar-
ture B—C. Additionally, B—C may not have been caused by any earlier
message into B, and instead might have been spontaneous.pds
sibility is given a weight equal to a link with delay dg_.c. y should
be a small constant; we uge= 4. A largery instructs the algorithm to
prefer longer paths, while a smallgrgenerates many short paths that
may be suffixes of correct paths. Spontaneous action is tls¢ likely
choice only when there are no messages into B within theyladg_.c
time. Figure 6 shows the weights assigned to all three plegsivents of
B— C, as well as the weight assigned to the possibility that¢uoed
spontaneously.

Once all of the possible parents for thisB message have been
enumerated, the weights of their links are normalized to &uin These
normalized weights become the probability for each linkgufe 7 shows
the possible parents for the-BC and B—D calls, with their assigned
probabilities.

Hosts or processes that were not traced resutiliimestamps in the
reconciled trace. Thatis, if node A was traced and B was heh A—B
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Figure 7: Possible-parent trees for the messages in Figure 5

messages will be present with send timestamps but not eetienes-

tamps, and B~A messages will have only receive timestamps. Both

estimatingdg_.a and assigning possible parents te-B. rely on having
timestamps at both nodes. In this case, we use A's timestanace
of B’s and only allow causality back to the same node»B—A. This

assumption allows calls from or to nodes outside the tracetiqs the
system but avoids false causality between, e.g., severalated calls to
the same server.

After enumerating and weighting all possible parents fahemes-
sage, the linking algorithm uses these links to generat aflthe pos-
sible children for each message, preserving the link pritibab. This
inversion, shown in Figure 8, is necessary because causeilnstances
are built from the root down.

Step 3: Building trees

The final step of the linking algorithm builds path instanéesn the
individual links, then aggregates them into path pattermbat is, if

step (2) finds the relationships shown in Figure 4(a), it \Wayénerate
the two causal path instances shown in Figure 4(b), with dHevfing

probabilities:

pp = 08.:09-(1-0.2)-(1-0.1)-(1—-0.48)
~ 0.270

p = 08.:09-(1-0.2)-(1-0.1)-0.48
~ 0.249

Each causal link included contributes a facfororresponding to its
probability. Each causal link omitted contributes a fb factor.

For each link in the tree (e.g., did-AB cause B- C?), step (3) treats
it as probably-false probably-true or try-both, based on its probabil-
ity. Decisions are designated try-both if their probabili close to 0.5
or if they represent one of the most likely causes for a givesssage.
That is, in Figure 4, if A-B is the most likely cause of B:D, then
the A—~B—D link will be made a try-both even though its probability
is not near 0.5, ensuring that at least one cause-eDBs considered
even if each possible cause has probabibity 0.5. The number of path
instances generated from a given root messa@¥2%), wherek is the
number of ambiguous links from that message or its descéntizat are
treated as try-both. Thereforkemust be limited to bound the running

0.64\0.61

Figure 8: Possible-child trees formed from the trees in Fige 7.

time of linking.

Linking assigns a probability to each tree equal to the ptodéithe
probabilities of the individual decisions—usifiy— p) for decisions to
omit a causal link—made while constructing it. If a specifittppattern
is seen several times, we keep track of the total score tli@gxpected
number of times the pattern was seen) and the maximum piiababi
Path patterns in the output are generally ordered by totaesc

Big trees will have low scores because more decisions (muceru
tainty) goes into creating them. This behavior is expected.

5.2 Node and network latency

The latency at each node B is the time between the receivetiimg
of the parent message arriving at a node B and the send tinestithe
child message that node B sends. Since both timestampscatddd,
clock offset and clock skew do not affect node latency. Fogregated
trees, the linking algorithm calculates the average of iogie’s delays
at each instance of the tree, weighted by the probabilityaohénstance.
In addition to the average, we optionally generate a histogef delays
for each node in the tree.

The network latency of each message is the difference batitee
send and receive timestamps. These timestamps are retatiifeerent
clocks (they come from LibSockCap logs at different hoste)the re-
sulting latency includes clock offset and skew unless wienesé it and
subtract it out. We use a filter on the output of the linkingoaiihm
to approximate pairwise clock offset by assuming symmetetwork
delays, following Paxson'’s technique [12]. For simplicitye ignore
the effects of clock skew. As a result, our results hide cloftket and
exhibit symmetric average delays between pairs of hosts.

5.3 Algorithm comparison

Our earlier work, Project 5 [1], presented two causal-patiysis al-
gorithms,nestingandconvolution The nesting algorithm works only on
applications using call-return communication and canaétdrequent
causal paths (albeit with some inaccuracy as their frequeinaps).
However, messages must be designated as either calls ongetnd
paired before running the nesting algorithm. If call-raetimformation
is not inherently part of the trace, as in the systems andlieee, then
trying to guess it is error-prone and is a major source ofdneacy.
Linking and nesting both try to infer the cause, if any, focleanessage
or call-return pair in the trace individually.

The nesting algorithm only uses one timestamp per message. |
therefore forced either to ignore clock offset or to use yuimestamp
comparisons [1], which only work when all clocks differ byssetime
than the delays being measured. Since clocks are often cimeymized—
PlanetLab clocks sometimes differ by minutes or hours—@ur@ach
of using both send and receive timestamps works better fde\area
traces.

The convolution algorithm uses techniques from signal gseing,
matching similar timing signals for the messages coming aode
and the messages leaving the same node. Convolution wotksamy
style of message communication, but it requires traces avitiinimum
of hundreds of messages, runs much more slowly than nestiimiimg,
and is inherently unable to detect rare paths. When we appbavo-
lution to Coral, it could not detect rare paths like DHT calfed could
not separate node processing times of interest from netdeldys and
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clock offset.

The linking and nesting algorithms both ha®énlgn) running time,
determined by the need to sort messages in the trace by &mpsbut
both are dominated by ad(n) component for the traces we have tried.
The convolution algorithm require@(lslg 33) running time, wheré is
the duration of the trace arglis the size of the shortest delays of in-
terest. In practice, convolution usually takes one to foaurk to run,
nesting rarely takes more than twenty seconds, and linkikestfive to
ten minutes but can take much less or much more given a nandtief
number of try-both decisions allowed per causal-link tieieking and
nesting both requir®(n) memory because they load the entire trace into
memory, while convolution requires a constant amount of owntyp-
ically under 1 MB. Our Project 5 paper [1] has more detailsrfesting
and convolution, while Section 6 has more details for ligkin

6. RESULTSFORPLANETLABAPPLICATIONS

In this section, we present some results from our analysésaoés
from the CoDeeN and Coral PlanetLab applications. TablecBqmnts
some overall statistics for these two traces.

6.1 Visualization of results

Solid arrows show message paths, labeled one-way delags, kviown.

Dotted arcs show node-internal delays between messagesetodes

are labeled with name and total delay for node and its childre
Figure 9: Example of call-tree visualization.

For a given causal path pattern, we use a timeline to représtn
causality and time; for example, see Figures 10, 12, 13, dndBaxes
represent nodes and lines represent communication liaks$y eode or
line is labeled with its mean delay in msec. If we do not hasieds from
a node, we cannot distinguish its internal delay from nekvatmlays, so
we represent the combination of such a node and its netwukk As a
diamond, labeled with the total delay for that combinatidiime and
causality flow left to right, so if a node issues an RPC calappears
twice in the timeline: once when it sends the call, and agdierwit
receives the return.

These timelines differ from the call-tree pictures traatifilly used to
represent system structure (for example, Figure 1 in [1€] Rigure 1
in [7], or the diagrams in our earlier work [1]) but we founchird to
represent both causality and delay in a call-tree, espgeidlen com-
munication does not follow a strict call-return model. Mag[2] also
uses timelines, although Magpie separates threads or vedisally,
while we only do so when logically parallel behavior reqsiie

It is possible to transform the timeline in Figure 10 to a dede,
as in the hand-constructed Figure 9, but this loses the lysuelpful
proportionality between different delays.

To avoid unreadably small fonts, we use short code nameg itimtie-
lines instead of full hostnames. Table 3 provides a traiosiat

6.2 Characterizing causal paths

Our tools allow us to characterize and compare causal pétbrps.
For example, Figure 10 and Figure 12 show, for Coral and ChDee
respectively, causal path patterns that include a cache anid a DNS

Code name| Hostname

A&M planetlab2.tamu.edu

A&T CSPlanet2.ncat.edu

CMU planetlab-2.cmcl.cs.cmu.edu

CT planlab2.cs.caltech.edu

How nodeb.howard.edu

MIT planetlab6.csail.mit.edu

MU plnode02.cs.mu.oz.au

ND planetlab2.cse.nd.edu

PU planetlab2.cs.purdue.edu

Pri planetlab-1.cs.princeton.edu

Ro planet2.cs.rochester.edu

UCL planetlab2.info.ucl.ac.be

UVA planetlabl.cs.virginia.edu

WaC cloudburst.uwaterloo.ca (Coral DHT process)
WaP cloudburst.uwaterloo.ca (Proxy process)
cl Any client

dnsN some DNS server

lo local loopback

webN some Web origin server

Table 3: Code names for hosts used in figures.

lookup. One can see that CoDeeN differs from Coral in its ddevo
proxy hops (described in [19] as a way to aggregate requastsdiven
URL on a single CoDeeN node).

A user of our tools can see how overall system delay is brokamd
into delays on individual hosts and network links. Furthiee user can
explore how application structure can affect performaffae.example,
does the extra proxy hop in CoDeeN contribute significardlyglient
latency?

Note that we ourselves are not able to compare the end-tgend
formance of Coral and CoDeeN because we do not have tracesahad
clients. For example, one CDN might be able to optimize tlietwork
latencies at the cost of poorer server load balancing.

6.3 Characterizing node delays

When looking for a performance bug in a replicated distedusys-
tem, it can be helpful to look for large differences in delajteen paths
that should behave similarly. Although we do not believee¢heere any
gross performance problems in either CoDeeN or Coral whetraces
were captured, we can find paths with significantly diffedgigys. For
example, Figure 13 shows two different but isomorphic caoiies paths
for CoDeeN (these paths do not require DNS lookups). Therosigrver
delay (a total including both network and server delay) it 8% in the
top path but only 28 ms in the bottom path. Also, the proxiethm
top path show larger delays when forwarding requests thasetn the
bottom path. In both cases, when a proxy forwards a respdndees
so quite rapidly.

Node Mean | Number of
name delay samples
CoDeeN
planetl.scs.cs.nyu.edu 0.29 ms 583
pll.ece.toronto.edu 1.47 ms 266
planlabl.cs.caltech.edu 0.59 ms 247
nodeb.howard.edu 4.86 ms 238
planetlab-3.cmcl.cs.cmu.edu 0.20 ms 53
Coral
planetl.scs.cs.nyu.edu 4.84 ms 6929
planetlab12.Millennium.Berkeley.EDU 6.16 ms 3745
planetlab2.csail.mit.edu 5.51 ms 1626
CSPlanet2.chen.ncat.edu 0.98 ms 987
planetlab14.Millennium.Berkeley.EDU 0.91 ms 595

Table 4: Examples of mean delays in proxy nodes.

Similarly, we can focus on just one role in a path and complage t



Number of Trace | Number of | Number of
Trace Date messageg duration hosts | processes
CoDeeN| Sept. 3,2004| 4,702,865 1 hour 115 230
Coral Sept. 6, 2004 4,246,882| 1 hour 68 168

Table 2: Trace statistics
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Figure 10: Linking algorithm output for a Coral miss path wit h DNS lookup, delays in ms.
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Figure 11: Node delay distributions (CoDeeN)

delays at the different servers that fill this role. Table éveh mean
delays in proxies for cache-hit operations (the causal patterns in
this case are trivial).

The message linking algorithm has enough information teegse
the entire distribution of delays at a node or on a link rathan just the
mean delay. Figure 11 shows the delay distributions for edthoper-
ations on five nodes. The nodes in this figure are also listdalite 4,

which shows mean delay values for four of the nodes betweemdO a

2 ms. The distribution for nodeb.howard.edu shows two peakiud-
ing one at 18 ms that strongly implies a disk operation ancesponds
with this node’s higher mean delay in the table.

6.4 DHT paths in Coral

Coral uses a distributed hash table (DHT) to store inforomagibout
which proxy nodes have a given URL and to store location infdfon

pruning parameters used, particularly the number of tiyrtits allo-
cated per link probability tree. Memory requirements @(e) for both
programs.

6.6 Metrics for sorting path patterns

The linking algorithm produces two scores for each pathepatit
identifies: a raw count of the number of instances and exgeaieber
of instances believed to be real. The latter is the sum of thlegbilities
of all instances of the path pattern. Sorting by the expentedber of
instances is generally the most useful, in that the pattatrtise top of
the list appear many times, have high confidence, or bothhlidigting
paths that appear many times is useful because they are wtéréza-
tions are likely to be useful. Highlighting paths with highnfidence
helps suppress false positives (i.e., patterns that aeeré@df but do not
reflect actual program behavior).

Two additional, composite metrics are: @jpectation- count and
(2) expectation:-y/count The first is the average probability of in-
stances of each path, and it favors high-confidence pathe.s&tond
captures the notion that seeing a path many times increhsesonfi-
dence that it is not a false positive, but not linearly.

7. ENTERPRISE APPLICATIONS

Although this paper focuses on wide-area applications;jpus work
on black-box debugging using traces [1, 2, 4] focused on LApliaa-
tions. We had the opportunity to try our tools on traces fromaler-
ately complex enterprise application, Slurfe&Ve do not present de-

about clients: Whenever a proxy does not have a requested web objecttailed results from Slurpee, since LAN applications are thet focus

in its local cache, it searches the DHT to find other nodes lihse
the object, and it inserts a record into the DHT once it hasenatd
the object. Figure 14 shows one such DHT call in Coral. The et
three parallel calls in this figure reflect Coral’s use of éhoverlapping
DHTs at different levels of locality. From the figure, it issalclear that
Coral's DHT is iterative: each hop in a DHT path respondsatiyeto
the requester rather than forwarding the query to the ngxt ho

6.5 Algorithm runtime costs

We measured the CPU time and memory required to run the riéconc

iation and message linking algorithms on several tracelsleTashows
that these costs are acceptable. The CPU time requirenrenitsgher
than the nesting algorithm but lower than the convolutigoathm [1].
The memory requirements reflect the need to keep the entice in
memory for both reconciliation and linking. We expect thenimg time

to beO(nlgn) for both reconciliation and linking because both require
sorting. However, thé(n) portions of each program dominate the run-

ning time. The running time for linking is heavily dependemt the

1The Coral authors call their structuredistributed sloppy hash ta-

ble (DSHT) to emphasize design decisions they made to impraae lo

balancing.

of the paper and space does not permit an adequate treatient.
ever, Slurpee is the one system on which we have used linkexiing,
and convolution. Further, we learned several things apglWAPS5 to
Slurpee that are applicable to wide-area applications.

The Slurpee system aids in supporting customers of a compeite
dor. It handles reports of incidents (failures or potenféllures) and
configuration changes. Reports arrive via the Internet,aadpassed
through several tiers of replicated servers. Between daclthere are
firewalls, load balancers, and/or network switches as qjate, which
means that the component servers are connected to a vdridistioct
LANS.

Since we could not install LibSockCap on the Slurpee serpacket-
sniffing was our only option for tracing Slurpee and had theaathge
of non-invasiveness. However, we found the logistics $icgmtly more
daunting than we expected. Packet sniffing systems are sixpeand
we could not allocate enough of them to cover all packet patiey
also require on-site staff support to set them up, configwitels ports,
initiate traces, and collect the results. In the futures¢himsks might be
more automated.

2Slurpee is not its real name.
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Figure 12: Linking algorithm output for a CoDeeN miss path with DNS lookup, delays in ms.
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Figure 13: Linking algorithm output for two CoDeeN miss paths, delays in ms.

We obtained simultaneous packet traces from five sniffeme, for
each of the main LAN segments behind the main firewall. Wetérea
each packet as a message, and applied a variant of our rigaHoi
algorithm (see Section 4) to generate a unified trace.

The five sniffers did not have synchronized clocks when theets
were made. Clock offsets were on the order of a few secondseSie
had two copies of many packets (one sniffed near the semiegroffed
near the receiver), we developed an algorithm to identifictvkniffer's
clock to use as the sender or receiver timestamp for eackrsgrmde)
in the trace. If the sniffer is on the same switch as a nodey évery
packet to or from that node appears in that sniffer’s trafege did not
sniff the node’s switch, then we chose the sniffer that doeththe most
packets to or from the node.

We applied all three of our causal-path analysis algorithonghe
Slurpee trace. The Slurpee trace conforms to call-retumasécs but
does not contain the information needed to pair calls witarrs. We
tried several heuristics for pairing calls and returns,thatinaccuracy
in this step limited the usefulness of the nesting algorit@mnvolution
does not require call-return pairing, but it does requirargd number
of instances of any given path. Several of the Slurpee patbsred
infrequently and were not detected by convolution. Soméeflurpee
hosts were only visible in the trace for a few seconds andéaati send
or receive enough messages to appear in any path detectemmic
tion. Linking was able to detect both common and rare pathsveas
not hampered by the lack of call-return pairing information

7.1 Network address translation

In analyzing the Slurpee system, we found instances of mktea-
dress translation, which did not appear in the Coral or CoDeaces
but which might appear in other wide-area systems.

Network address translation (NAT) [6] allows network elenseto
change the addresses in the packets they handle. In Slarjmse] bal-
ancer uses NAT to redirect requests to several server asplitYide-area
systems often use NAT to reduce the pressure on IPv4 adduass s
assignments. NAT presents a problem for message-basedlitaasal-
ysis, because the sender and receiver of a single messagéfesmnt
“names” (IP addresses) for one of the endpoints.

We developed a tool to detect NAT in packet traces and to tewri

trace records to canonicalize the translated addressestobhsearches
across a set of traces for pairs of packets that have idébtckes and
header fields, except for IP addresses and headers thatllyochenge
as the result of routing or NAT. While small numbers of matheght
be accidental (especially for UDP packets, which lack TGRsudo-
random sequence numbers), frequent matches imply the uséTof
The tool can also infer the direction of packet flow using tRdéader’s
Time-To-Live (TTL) field, and from packet timestamps if wengaorrect
sufficiently for clock offsets.

We have not tested this tool on packet traces from a widesysam,
but we believe it would work correctly. However, becauseSabkCap
does not capture message contents and cannot capture paeakietrs,

LibSockCap traces do not currently contain enough infoimnab sup-
port this tool.

8. RELATED WORK

We divide related work into three categories: trace-basebriques
for causality and performance analysis, and other intéiposbased
tools.

8.1 Trace-based analysis tools

Our previous work on Project 5 [1], which we have already dbsd
earlier in this paper, is most closely related work to WAPHisTear-
lier work ignored many practical issues in gathering trapesticularly
overlapping traces from multiple sniffers, and recongilthem into a
single trace for analysis. Also, Project 5’s nesting altponi depends
on call-return semantics and is too sensitive to clock tdfsehile the
convolution algorithm requires long traces and cannot io&isality in
the presence of highly variable processing delays.

Magpie [2] complements our work by providing a very detaipect
ture of what is happening at each machine, at the cost of mgéaliun-
derstand the applications running at each machine. Magggs Hvent
Tracing for Windows, built into the Windows operating systeo col-
lect thread-level CPU and disk usage information. Magpiesdoot
require modifying the application, but does require “wragg around
some parts of the application. Their algorithms also rexair application-
specificevent schemawritten by an application expert, to stitch traced
information into request patterns.

Several other systems require instrumented middlewarenaribs.
Pinpoint [4] focuses on finding faults by inferring them framomalous
behavior. Pinpoint instruments the middleware on which ppliea-
tion runs (e.g., J2EE) in order to tag each call with a reqi2sfThe
Distributed Programs Monitor (DPM) [10] instruments a foain to
trace unmodified applications. DPM uses kernel instruntiemto track
the causality between pairs of messages rather than imjeceusality
from timestamps. Paradyn [11] uses dynamic instrumemtabocap-
ture events and location bottlenecks, but it does not orgasients into
causal paths. Finally, some of the most invasive systent$, as Net-
Logger [14] and ETE [8], find causal paths in distributed egsby rely-
ing on programmers to instrument interesting events raltagrinferring
them from passive traces. Pip [13] requires modifying, ¢east recom-
piling, applications but can extract causal path infororatiith no false
positives or false negatives. Because of the higher infoomaccuracy,
Pip can check the extracted behavior against programmigemwtem-
plates and identify any unexpected behavior as possiblecoess or
performance bugs.

8.2 Interposition-based tools

Several other systems use interposition. Trickle [15] Uikeary in-
terposition to provide user-level bandwidth limiting. Mablet [18]
rewrites network traffic using library interposition to rtiplex emu-
lated addresses on a single physical host. Systems suclasp@rent
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Figure 14: Linking algorithm output for a DHT call in Coral, d elays in ms.

Number of Trace Reconciliation Message Linking
Trace messages duration || CPU secs| MBytes || CPU secs| MBytes
CoDeeN| 4,702,865| 1 hours 982 697 730 1354
Coral 4,246,882| 1 hours 660 142 517 1148

Table 5: Runtime costs for analyzing several traces

Result Caching [17] and Interposition Agents [9] used degjng) in-

terfaces such astrace or /proc to intercept system calls instead of
library interposition. Library interposition is simplend more efficient,

but it requires either dynamically linked binaries or egjtlielinking of
traced applications.

9.

CONCLUSIONS

We have developed a set of tools called Wide-Area ProjectARSEY
that helps expose causal structure and timing in wide-aistatdited

systems. Our tools include a tracing infrastructure, whirdiudes a

network interposition library called LibSockCap and aluns to rec-
oncile many traces into a unified list of messages; a medsdgeg al-

gorithm for inferring causal relationships between messagnd visual-

ization tools for generating timelines and causal treesapytied WAP5

to two content-distribution networks in PlanetLab, Conadl &CoDeeN,
and to an enterprise-scale incident-monitoring systenrp8e. We ex-

tracted a causal behavior model from each system that nthjmile-
lished descriptions (or, for Slurpee, our discussions Withmaintain-
ers). In addition, we were able to examine the performanaedofidual
nodes and the hop-by-hop components of delay for each reques
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