Example 6.1

Jill's Bike

Jill Bates hates climbing hills. Jill rides a bicycle everywhere she goes, but she always wants to go the easiest and shortest way possible. The good news is that she lives in Greenhills, which has all its roads laid out in a strictly rectangular grid--east-west roads are streets; north-south roads are avenues and the distance between any two adjacent grid points is the same. The bad news is that Greenhills is very hilly and has many one-way roads.

In choosing a route between where she starts and where she ends, Jill has three rules:

  1. Avoid any climb of more than 10 meters between adjacent grid points.
  2. Never go the wrong way on a one-way road.
  3. Always travel the shortest possible route.

Your program should help Jill find an acceptable route.

Input

The input file contains data in the following form:

You may assume that all street and avenue numbers are within the bounds defined by the first line of input, and that all road definitions are strictly north-south or east-west.

Output

For each path query in the input file, output a sequence of grid points, from the starting grid point to the ending grid point, which meets Jill's three rules. Output grid points as 'street-avenue' separated by the word 'to'. If there is more than one path that meets Jill's criteria, any such path will be acceptable. If no route satisfies all the criteria, or if the starting and ending grid points are the same, output an appropriate message to that effect. Output a blank line between each output set.

Sample Input

3 4
10 15 20 25
19 30 35 30
10 19 26 20
1 1 1 4
2 1 2 4
3 4 3 3
3 3 1 3
1 4 3 4
2 4 2 1
1 1 2 1
0 0 0 0
1 1 2 2
2 3 2 3
2 2 1 1
0 0 0 0

Output for the Sample Input

1-1 to 1-2 to 1-3 to 1-4 to 2-4 to 2-3 to 2-2

To get from 2-3 to 2-3, stay put!

There is no acceptable route from 2-2 to 1-1.