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ABSTRACT

Mary interesing large-scde sydems are distributed systemsof
multiple communicding compmerts. Sud systemscan be very
had to dehug, egpecially when they exhibit poor perfomance.
The problem becanesmud harderwhen systemsare composd
of “blackbox” comporerts. software from many different (pe-
hgps competing) vendars, usually without saurce code available.
Typical sdutions-provider employees arenot alwaysskilled or ex-
perienced erough to debug these sysems efficiently. Our goal is
to desgn tools thatenadle modestly-skilled programmergard ex-
perts,too) to isd ate performane bottlenecks in distributedsystems
compogdof black-box nodes

We approachthis problemby obtaining mesage-level tracesof
systemactwity, aspassvely aspossibleandwithoutany knowledge
of node internds or messagesemartics. We have developa two
very different algaithms for inferring the dominart cawsd paths
through a distributed system from thesetraces. One uses tim-
ing information from RPC mesagesto infer inter-call causdity;
the other uses signal-processingtechniques. Our agorithms can
a<ribe delay to spedfic nodes on specific cawsd paths Unlike
previous apgroachesto similar problemsour approad requires no
modificationsto apgdications, midd eware,or messages.

Categoriesand Subject Desriptors

D.2.5[Software Engineering]: Testing ard Debugg ng—distrib-
uteddebugging, teging tod's

General Terms
Al gorithms Peformane, Measuement
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1. INTRODUCTION

Many commecidly-important systems especidly Web-bagd
applications, are compo®d of a numberof communicaing com-
ponerts. These are often structured as digtributed systems with
comporentsrunning on different processors or in different pro-
ceses Forexampe, amulti-tieredsystemmightstartwith requegs
fromWeb clientstha flow through aWeb-sener front-end andthen
to a Web “applicationserver,” whichin turn makescalls to a data-
basesever, ard perhapsaditiond services (authentication,name
savice, credt-card authorization,custome relation$ip manage-
mert, etc.)

Sud sydems can be very hardto debug, especially whenthey
exhibit poor peformane. Distributed systemsarearealy hardto
debug, but the problem becmmesmuch harderwhenthey are com-
posedof “black-box’ compmerts: softwarefrom many different
(perhgs competing) vendrs, usually without source code avail -
abe

Enterpreesoftenbuy compgex systemsascomplete customized
packages from a “sdutions vencbr” Solutions verdors mug de-
liver complex component-based systemswithout the expens of
highly-skilled, experienced programmers.While modestly-skil led
programmes can desgnand congrud sud systems,they maylack
the expertise to solve performarce problemsefficiently. Vendas
of individud compaerts provide training ard supat for solv-
ing peformane problemswithin the compnents, but not neces-
saily amorg multi-venda comporents. Therefore whole-system
performane debugging can requre either aninordinateamount of
time, or the servicesof expersive and hard-b-find systemsintegra-
tion experts. Both problemscut into profits for solutionsvendars.

We conterd tha peformance-otiented opeating systemsre-
searchmust focuson performarcein-the-large ratherthan merely
ddivering incrememal improvementsfor low-level compmert per-
formance Complex sygemsexhibit performance problemshat of -
tengrow out of the systemcompexity, and while thesecan same-
times be solved by improving the performance (or seledion) of
low-level compamerts, they canna be diagnosedby focusng on
thecomporents.

Our gaal is to design tools tha hdp progammes isdate per-
formancebattlenecksin black-boxdistributed systems Thee tods
should nat require much (or ary) direct sugport from the compa-
erts themelves, beauwsewe do nat wart to assimethat software
verdorswill malke any effort to suppart a particular methoalogy.
Thetoolswill nat themséves solve any performarce problemsbut
by isolating problemsefficiently and (we hope accurately, they
should increae the efficiency bath of modestly-skilled program-
mersand of experis at systemsintegration.



In this paper, we desribe a speific appoach to this goal,
basatlon application-independent passve tradng of commurica-
tion betweenthenodes in a distributed system,combine with off-
line aralysis of thesetraces We show tha traces gathered with
little or no knowledge of application desgn or messagesemantics
are sufficient to make useful attributions of the sources of system
latency. Ouringsten@ onpasive tracing with no application modi-
fication makes our approach applicalle to almostany distributed
system, and differertiates our work from other approates that
either require application or middleware modfications or make
strongea assumptions about apdications or messages.

2. PROBLEM STATEMENT, GOALS, AND
NON-GOALS

We mocel a distributed systemas a graph of communicaing
nodes Nodes might be compuers, in which case the edges are
the nework comedions between communicaing pairs of nodes
(Our approach hardlesothernodegrandarities, aswe will discuss
in Sedion 6.) An externd reqleq to the system causesactvities
in the graph alonga causal path: a seiesof nodetraversas where
eaxhtraversal is caused by same messagefrom a prior node onthe
pah. (Sporaneoussystemopeations can aso gererateactvities
on causl paths)

| client | | client | | client | | client | client,

| web server | | web server
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Figure 1: Example multi-ti er application showing a causalpath

Figure 1 shows an exampleof a typical distributed system (a
multi-tier Web apgication), with onepossble cawsd pah supaim-
poedasathick line. (The thinner arrows show potettial one-hop
mesaye pahs.) Note that this path flows severd times through
mod of the nodesit touches since this apdication is RPC-basd
ard bothcdls and returnscawsenodeoperations

We asume thatal latendesin such a systemcanbe ascribedto
the nodetraversls. (In a sygemwith sigrificart network delays
we can mocel each long-dday netwak conredion asapar of zero-
dday conrectionsand avirtual dday node Our initia target envir-
onments are LAN-based sygems,where netwak propayaion and
switchingdelaysare normally negligible.)

Note that the same node may impo< differert ddays for dif-
ferent traversals. For example,the “authentication server” noce in
Figure 1 is traversedtwice in the path shown: once between its
invocationand its call to the datalase ard oncebetwee the data-
base's respnse and its own response to the Web server. Becalse
thes are, most probally, different code paths they could easily
have different latercies

While the examplein Figure 1 is an RPGstyle system,our ap-
proad a so covers mesage-bagdsystemsin whichmesagesmay
flow arbitrarily from node to node without explicit cdl-returnse-
martics. For example, viewed at the level of an emall message,

the Internet mail systemis messagebasel, nat RPC-style.Simple
distarce-vedor routing protocd s are a so mesage-baed

Theam of our projed isto credetods and methalologes that
erable programmergo understandthe sources of latercy in adis-
tributed system. In the context of our mode, we wantthesetods
to:

o find the high-impact causal path patterns—the repeatedly
executed causal pahs that accaunt for a significant fradion
of the systems latercy asobseved by its uses. Theseare
thepatierns that are executedfrequently andwith high mean
latency relative to ary othe frequertly-execued patterns.

e identify thoe nodeson high-impad pdaternsthat, as parti
ciparts on the® patternsaddsignificant latency to the pa-
terns For example, an authentication sever that caches its
results might be used by several nodes in a Web applica-
tion, but mightonly causehigh lateng wheninvoked froma
login-server node andnot wheninvoked from deger in the
apgication.

To illustrate theimportance of the seond point, we use anara-
logy: aflat proeedue profiler cantell you thata function is con-
suming lots of time but only ahierarchicd profiler (e.g.,gprof[9])
can tell you that the problemis not that the function is slow, but
thatit is being called from a place tha does't needto call it so
often. The context in which acompaert is usedmay beof critical
importancein diagnoss.

Therequiremets above define wha malkesthe tod s useful. We
alsoimposesame requiremets to make the tods broady applic-
able to systemsof blad-box comporents Ourtoolsshoud:

e require minimal knowledge (on the part of the tod or the
use) of the sematrtics of the application,the implemeration
of nodes thesemartics of messages, or a priori information
abait communicdion paths

e require no madificationsto apgications, middleware, mes-
sages or workloads.

e notdgnificantly perturb systemperformane.

We believe tha atool that requiresapplication-sgcific knowledge,
or application modifications, is much lesslikely to be used. We
egecially wish to avoid the need to deploy new infragructureor
promulgate new standrdsbefore our tools could be useful. We
would like to approximatetheided of atod thattakesno effort to
use. Therefore pnemeta-gohfor ourresarchisto testhow close
we can get to thezero-knavledgeideal.
We also have somenon-gods:

e Wearenotdevelopingtools to redacethe needfor program-
mers. Performarcediagnosisishard,andour goalisto meke
it easer for humans nat to automae it.

e Ourtoolsare not meant to verify corred systembehavior, or
diagnosethe causesof faulty behavior.

e Ourtodsarena amed at charaderizing or bendimaking
sydem performance

e Becais ourtods areaimedat the dehugging phas, we do
not require red-time results; we are willing to use offline
andysis (as with a procedure profiler).

2.1 Hypotheses
We are atteming to validatetwo hypatheses:

1. Ourblack-bax approach is sufficient to identify high-lateng
cawsd path patternswith useful predsion, andto asribe the
souces of swch latercy to specific nodes in the context of
speific paterns
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2. Giventhat our black-bax approat doesidertify thesources
of latercy, thisinformationis useful to aprogrammewho is
debuggingthe performarce of a distributedsystem.

The first hypothesis can be evaluaed udng traditional metiics of
computersystemevaluation. The second hypotheds, however, is
anas®rtion abait whathumansfind use€ul in carrying outamesy;,
intellecually challengingtask. In this pgper, we corcertrateon the
first hypothesis andleave thevalidity of thesecond to thereader's
intuition.

3. RELATED WORK

Before de<cribing our approad, we review several categories of
related work.

3.1 Similar approachesto similar problems

Severalresarchprojeds have attacled the problem of perform-
arce dehugging in distributed systems but have taken less radcal
approadhesto the problem of bladk-box compamerts. In paricular,
they all require eitherahomayereows imp ementatiorervironment
or moreintrusive insrumentation. None of these systemsrely on
pasdve mesaetracing.

Hrischuk et al. [11] obtain causal traces of distributed compu-
tations, including various reourcedemands (not just latency), by
labdling each end-to-erd adivity usng an object-orientedproto-
typinglanguage(Mlog). Althoughthisdid notrequire madification
of the prototypeapgication, their approad is nat applicalie out-
sidethis prototyping system,andin particular would nat be useful
for systemsbuilt from legacy compnents.

Probally the work closed to oursis Magpie[13], whichis also
aimedat performance andysisof distributed sysems.Magpe, too,
treas comporentsas black boxes. However, Magpe specifically
asaiatestracedmessages with incoming requess, by “taggingin-
coming requestswith a uniqueidertifier and assaiating reource
usagethroughout the system with thatidertifier” This implies a
moresaohisticatedtracing infrastructurethanin our approah, but
perhgps less need for complex pog-processng. Magpie alsocon-
centrates morethanwe do on deteting relatively rarearomalies.

A mud earlier projed, the Distributed ProgramsMonitor
(DPM) [18], dso reports pathsof cawsality throudh distributedsys-
tems. It useskernel instrumentatiorto trackthe causal information
betweenpairs of messayes, ratherthantrying to infer causality from
mesayetimestamp. DPM reportsan edyebetwea a pairof nodes
if any cawsd pathincludestha edge. Therefor, theexistene of a
pah in theresudting gragh does nat necesaily meantha any real
causd pah followedal of thoe edyesin thatsequence

3.1.1 Commecial products

Several comparies arealy sell sdftware to isolate performarce
problemausingcausl tradng. For goad commercia reasors, these
prodicts aim at a robustsdution for a narrow version of the prob-
lem we areaddessng; our approad is both broader and riskier.

Theproduds thatwe areaware of concentrate modly on instru-
merting Java applications, since thisis acommercially viable mar-
ket and becatse the Java Virtual Machine (JVM) provides a con-
veniert locus for norrintrusive ingrumentation. (Some systems
focuson .Net insteal of Java.) They usually also instrumentone
or more popuar non-Java HTTP severs, of neessty, but lack the
ahility to ded with abroade range of “legacy” nodes.

For example,AppAssure[1] canautomaically createcompmn-
ernt deperdency mockls, using “adapters”that poll comporents
through existing APIs and by instumenting 2EE method calls.
PerfomaSure[23] remndruds execution paths by taggng end-to-
erd adivities(usertrarsactions)asthey flow througha J2EE-bagd

system.OptiBench [22] cdleds traces by insrumenting 2EEand
Javainterfaes and apparentlycan provide fine-grainedtiming for
steps on cawsd paths OptiBendt alsosypportstransdion replay
providing problemre-creatiorto aid in debugging.

3.2 Different approachesto similar problems

Tierney et al. [26] desaibe NetLogger, a systemfor real-time
diagnoss of pefformane problems in distributed systems. Ther
approad requires programmerdo add event logging to carefully-
chosen pointsin the application, and gererates'lif elines” that cor-
respnd to our cawsd paths NetLogger providestools for man-
agng and visualizing logs, but thetod s appear unableto aggregae
information from many executionsof thesane causd path.

Hellerstein et al. [10] de<ribed ETE, an approah for measur-
ing both end-to-end respasetimes and the contributing compm-
ert latendes. Ther approach requires progammess to ingrument
applicationsto reveal sigrificart events andto desaibe interesing
transactions aheal of time so it is not a black-boxtechnique.

3.3 Similar approachesto diff erent problems

Chenet al. [5, 6] descibe Pinpoint, a systemfor locating the
comporentsin a distributed system maost likely to be the cawse
of a faut. Pinpoint differs from our work in tha they focus on
faults rathe thanperformanceproblems Their appoach involves
cdleding endto-endtracesof client reqeds travelling through a
distributed systemby tagging J2EE cdls with arequest-ID; thisre-
guiresnodired apgication modfication,but is currently limitedto
singe-meachinetracing. They then use data-mining techmiques to
correlatelow-leve fautswith high-level problems

Brown et al. [3] also de<ribe a techrique amed a problem
(fault) deerminaion basd on charaderizing dynamic dependen-
cieshbetweencomporerts. However, rather thanusingtraces(asin
Pinpdnt), they perturb systan compnents (for example, by tem-
porarily locking adaabasetableto prevert acompmert frommak-
ing progres). Bagchi et al. [2] de<ribe a similar approad based
on fault injection. Note that the resulting pair-wise deperdercies
arelessspecificthanernd-to-erd causl pathswould be andtheper-
turbation approach, which is definitely not passive, requires corsid-
erabe knowledge of thesygem dedgn.

In Sedion 5.2 we deribe an agorithm for discovering cats-
ality from traces based on datistical correlation. Zharg and Pax-
s [27] dso use Hatigicd techniques correlating traffic to de-
tectintrudes who subvert hostsfor use as“steppng stone” (i.e.,
intruders who telnet into a host and then out of it, intending to
cover their tracks). Huang et al. use andysis of passively-obtained
nework traesto detect performarce prodems in wide-area net-
works [12]. However, they are interestedin nework-scde phe-
nomena(dday or congestion)rathe thancausality.

4. OVERVIEW OF OUR APPROACH

How might atool tha understads nothing about the semartics
or implementation of the individud comporentslocae perform-
arce problems in a digributed system? Our approah relies on
tracing the mesages betweenthe nodes, and using one of several
offline algorithmsto infer causdity fromthesetraces. In particular,
our agoarithms infer multi-hop causal path pattems and provide
statistts abou lateng, both of each paternand of each nodetra-
versd asit ocaursin a particular pattern.

The upper pat of Figure2 givesan examge of one activation
of asdmple system. NodeA is the “client” thatinitiatesa causal
pah, which corsistsof three RPCs(A cdls B, B cdls C, thencalls
D, then returnsto A). The path includes eleven steps six RPC
mesayes(odd-numbeed arrows) andfive intra-naledelays (even-



Figure 2: Example causalpath in detail

numteredarrows). The lower pat of thefigureis anabstraction of
the cawsd pathshowing tha the eleven steps arecausdly related.
Sinceour mesage tracesincludeonly thesix odd-numberedsteps
ourtask istoinfer theeven-numberedstepsard the causal connec-
tions. We d so want to know latenédes for the even-numbeed steps
which would allow usto repat tha the latercy of the cawsd pah
is dominated for example, by step 6 (internd to node B). A key
feature of our approach is that we can separately report thedd ays
of steps2, 6, and 10 in this example

This task is difficult because a red traee containsinterleaved
mesayesfrom many separatecausal paths Also, a use of our
tool wantsto see a statistical summaryfor each of themod import-
art causal pathpaternsin thesystem, nat alist of every causalpah
seenin thetrace.

Our approad involves three phases:

1. Expodng and tradng communication: In this online
phase, we gatheracomgetetrace of al inter-noce mesages
for an operation& system, uncer red or synthdic load De-
pendng on the meansof communi@tion, we might obtain
a single globd traee, or a sd of per-edje traces for each
pair of communicaing nodes This pha% createsseveral lo-
gigtica problems including how we obtain individual mes-
sages without perturbing the sygem, how we corvert the
messages to a condse trace and how we marageard store
large amountsof trace data Sedion 6 discusses this pha.

2. Inferring causal paths and patterns: In this offline phase,
we pod-processatrace usng oneof severalagorithms The
algorithmsmud cope with tracesthat are potentially quite
large andnoisy (e.g.,with missing entries, extrareous calls,
timeous and retries, unsynchronizedclodks, etc.) Although
this phase need not mee real-time peformane gods, our
algorithmsmud be reasmally efficient in time and space.
However, the algorithms need not be fool-proof, becawse
our tods are meantto help humars debug systems not for
automaticcontrol. They shauld be robug erouch that they
seldan fail with false negaives (i.e., failing to detect the
mostimportart causd pathpattens) or false postives (over-
whelming the user with extraneaus information). Section 5
de<cribesour algaiithms.

3. Visualization: A full systemshouldalsoprovide appropriate
ways to visualize the resuts. However, our reearchso far
hasonly partally addessdthisissie.

An abstract traceformatformsthe connection betweenthefirstand
secord phases, which alows us to useseveral different techniques
to gather traces, andseverd differert offline algorithms Thetrace
contains,at a minimum, a (timesamp, serder, receive) tupe for
eaxhmesage, but might includesomeaddtiond information.Be-
causetheinformationwe needdepends on which agorithmis used,
we will desaibe the algaithms before deribing the specifics of
gahering traces.

5. ALGORITHMS

Our key techrical, asopposdto logistical, chdlengeis to infer
causal path paternsand laterciesfrom relaively smple message
traces We have developedtwo distinctly differert algorithms One
deperds on the use of RPC-stylecommurication, and operates on
individud messages in thetrace The othe is able to handle free-
form mesage-baal communication, and uses signal-procesing
tecmiques to extrad causal information fromtraces.

5.1 The*“neding algorithm”

The first algorithm combines all of the per-edge traces into a
sinde globd trace and explicitly examinesthe individud trace
ertriestoinferhow cdls are“neged.” Thatis, if nodeA callsnode
B ard thenB calls C beforereturningto A, the B-to-C call is nested
within the A-to-B cdl. We call this the “nesting algorithm” It is
roughy linea (in timeard space) inthesize of thetrace However,
it requres RPC-stylecommurcation (in which the messages are
cdls andreturns) to male itsinfererces

node A node B node C node D
1 (call)

5 can |

5 (return) |} 4
|

time

6
l?&

\>
9 (return) l 8
| 9 (return)

11 (return) llo
Plshihaniit

Y

Figure 3: Timelines for example of Figure 2

Figure 3 illustratesthe nesting property for the example causal
pah from Figure 2. This figure shavs the causd conrections
betweenthe timelinesfor each of thefour nodes In this example,
the call from B to C (mesages3 ard 5) is negedin the call from
A to B (mesaesl and 11). Thealgaithm infersneging relation-
ships by examining the timegampsof the messgesin the trace.

While any given par of cdls might appea to be neded purely
by accidert, if thesameneging relationstip appeas repatedy in
a lengthy trace then we can infer with high probability that the
nesting repreerts a causal relaionship between thes calls. The
proessng latendes in nodes B, C, and D may be cdculated dir-
edly fromthemessaetimestams. We build multi-noce cdl paths
based onapparentcausal relationsh ps, then apply s mpl e statisttcal
methalsto infer which pahsarebath non-aciderta and signific-
art contributorsto overall system latercy.

5.1.1 Details of thenestngalgorithm

A cal pair is atuple desaibing a single call from one nodeto
amtherandits maching retum. It containsthe timestampsof the
two mesaesand the namesof the nodes The nestingalgaithm
consigs of four steps

1. Find cdl pairsin thetrace.

2. Find al possble negings of onecall par in arother ard es-
timatethe likelihood of each canddae neging.

3. Pick the most likely candidae for the causng cdl for each
call pair.

4. Derive cdl pathsfromthe cawsd relationships
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We firg illustratethe algaithm using the example in Figure 3.
Step(1) groups trace entries 1 and 11—the call A — B and the
return B — A—intocall par (4, B, 1,11); ertries3ard 5intocall
par (B, C, 3,5); andenties7 ard 9into call pair (B, D, 7,9). (For
ease of explamation, in this example we usethe messaye numbes
asthetimestampvalues)

Step (2) examines each cdl par to deternine the set of cdls that
might have cauedit. Here, (B, C,3,5) and (B, D, 7,9) bothoc-
cur beweenthebeginningard endof (4, B, 1,11). (4, B,1,11)is
the only cdl thatencloes(B, C, 3,5) and (B, D,7,9). Inamore
complex example,acdl pair might be neded within several differ-
ert “parent”cdls, which would have to berarked by likelihood

Step (3) chooses themod likely paren call for each cdl pair in
the trace asits causal parent, baseal on aggregateinformationfrom
all other call pairs betwee the samenodes Step (4) agan exam-
ineseachcall pairand creates call pathstartng from eachcall pair
thatwasnot neged in any othercall pair. Snce (4, B,1,11) isthe
paent for two call pairs,it credesthepath A — B — C; D. The
cdl pairs(B, C, 3,5) and (B, C, 7,9) do ndt initiate paths becawse
they arenestedin (4, B, 1, 11).

We gtore al path paternsin a table. If a new path matctes a
pah patternalread in thetable, thentheexisting patternisupdated
with the latenciesfor thenew path.Otherwiseanew pah paternis
initializedwith thepath'slatendes. At theerd of the algorithm, the
pah paternscan be sorted by thdr frequency andall path paterns
can be displayedwith average latenciesor latency distributionsfor
eahnode.

Figure 4 shows pseudo-codefor the four stefs of the nesting al-
gorithm, which we now explainin more detail.

5.1.1.1 Identifying call pairs.

This part of theagorithm (procalureFindCdlPairsin Figure4)
matctes call andreturn traceentries into call pars usinga hash
table Topencanis Which is indexed by (sencer, receiver, cdlid)
tuples Cdl idertifiers are baed on packet healer information
ard are usel only to mach cdls with returns;they need nat be
erd-to-erd reques identifiersasusel in Mag@de or Pinpoint. Mes-
sgyesthat do not have a matching call or return messageare dis-
cardedduring this step; noisein thetrace—extrareows ard dropped
mesayes—doesnotimpect thereg of the algorithm.

When call identifiersare not provided or are not unique (for
example, when RPC packets are retrarsmitted), the entries for a
given (sende, receiver, callid) are sorted by timegamp. If mul-
tiple calls occu from A — B beforeany returnsfrom B — A
theneach returnis matcted with the ealiest unmachedcall. This
heuristic works when no cdl pah progreses fager than its pre-
decesas, but fails otherwise. For examge, given the correct
cdl pairs (4, B,1,7) and (4, B,k,l), if i < k but 7 > [ then
the algarithm will incorrectly createthe call pairs (4, B, ,1) and
(4, B, k, 7). More importantly, this heuristic canrot hande ex-
trareous or drogped messayes. However, we bdieve thatwe can
find usable call idertifiersin mesageheadasin mod cases, and so
we have ignoredthe problemso far.

This step alsoidertifies al possble parentsfor ead call par.
At the time the return message of the call pair (B, C) is pro-
cessed, we find all call pars (—, B) in Topencans With an ealier
cdl timegamp. (B, C) is neded insideall of them.

5.1.1.2 Scoring potentally-causa nestings.

A call par (B, C,k,l) might be nestedin mary (4, B, 1, 7)
cdl pars, but it is only directly cawsed by oneswch paren. The
ScaeNedgings procedue edimatesthe likelihoad thateach neging
relationshipisreally acausalre ationship. We dothisusng ascae-
board that recrdsthe prevalene, in the entire trace, of theddays

procedur e FindCallPairs
for each traceentry (¢;, CALL/RET, sende A, receiver B, callid :d)
caseCALL:
store (t1,CALL, 4,B id) in Typencalis
caseRETURN:
find matchirg entry (¢2, CALL, B, 4, id) inTopencalls
if matchis foundthen
remove entry from Topencatis
updae entry with returnmesagetimestamp,
add erry to Tca“pairs
entry.paents:= {all callpairs(¢s, CALL, X, A, idz)
in Topenca“s with t3 < tz}

CoNOURWNE

procedure ScoreMestings
for each child (B, C, t2,t3) in Teatipairs
for eath paent(4, B, t1, t4) in child.parerns
scoretard A, B, C,t2 — t1] + = (1/|child.paentd)

procedur e FindNededPairs
for each child (B, C, t2, t3) in cdl pairs
maxscore:= 0
for eath p (4, B, t1, t4) in child.paents
peralty = /* see Sedion 5.1.1.3*/
score[p := scaebaard[4, B, C, t5 — t;]-peralty
if (scae[p] > maxscae) then
maxscae := score[d
parert :=p
parent.children:= parent.childrenu { child }

procedur e FindCallPaths
initi dize hashtalle Tpa¢h4
for each cdlpair (4, B, t1, t2)
if cdlpair.paents= 0 then
root := new pathstarting at A
root.edgs:= { CreaePathNoe&(cdlpair, ¢1) }
if roatisin Tpa:ns then upddeits latencies
elseaddrootto Tyatn s

function CreatePathNde(@llpair (4, B, t1,t4), tp)
node := new node with nameB
node.lateng :=t4 — #;
node.calldday := ¢; — ¢,
for ead child in cdlpair.children
noce.ed@s:= nodeedges U { CreatePathNde(cild, ¢;) }
return node
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Figure 4: Psaudo-codefor the nesting algorithm

betweenthetwo call mesaesin a potentially-causd nesting.

The scorelpard repreents the se of al neging-delay tuples
(4, B, C,delta), where delta is the time differen@ between the
cdl from A to B ard the sulsequent call from B to C; eachtupe
has an ascciatedvalue. The scaeboad entries for a given neg-
ing thusform a histogramof these delay values However, each
increment to a histogramcount is weightedby the numberof pos-
sible parentcdls: if thereare N possble parentcdls for a given
child cdl, thenthe scoreboad valuefor eachof thee N tuplesis
incremetedby 1/N.

We adually storeeachhistogam asa set of exponertially-sized
bing efficiently represerting the large range of delay values that
might appear in real traces. We find that 340 bins (indexing the
histogam by log, .5 delta) givesreaonably accurateresilts for
intervals betweenl msee. and 2 hous. The number of histograms
is equal to thenumber of (4, B, C) triplesswchtha acdl B — C
is nestedin acdl A — B atleag once. This numbe, whichis
indeperdert of trace length,isatmostn®, for n nodes in pradice
it should be significantly lower.

Afterscoringall of the call pars,we optiondly smodh thehisto-
gramsby convolving them with aGausiannormd curve. Smooth-



ing hdps accuracy when thereis skew in themesage timestamps
asshown in Sedion 7.5.6;it has little effect in traceswithout skew.

node A node B node C

y y y

Figure 5: Example of paralld cals

Figure 5 shavs an examplein whichtwo B — C cdls areeach
nestedin two A — B calls, creding four possiblesetsof parent-
child parings However, the “medium-bngth” delay (¢s — ¢t and
ts — tz) ocaurstwice as oftenas the“long” dday (¢« — ¢1) or the
“short” delay (ts — t2). Thus, the histogramfor (4, B, C) hasa
peak atthe medium-engthdday.

5.1.1.3 Chooshgunique parents

The FindNegedPairs procedue choosesthe mog likely causal
paent for eachcdl par. Theinferencethat ary given nestingis
a causal relationdip is baed on the scoreboad generated in the
previous step, combinel with simple heuristics abou the parent's
cdls to othe possble children. For ead cdl par (B, C,t2, t3)
in the trace, we corside each possible parent(4, B, t1,t4) and
generatea score for the relationship. Theraw scae is simply the
valueof (4, B, C,t; —t;) in the sorebard. The raw scoreis then
saledusng three penalties

o Overlapping-child pendty: We countthenumter of children
coverlap already assigredto the givenparert that overlapin
time with the current call par, ard mutiply the score by
Conerlap_z-

e Same-child pendty: We court thenumbe of childrenc,ame
arealy asigredto the given parenttha have the samedes-
tination asthe currentcall pair, and multiply the soore by
Csame_

¢ Gengic-child penalty: We countthe numberof children cary
arealy assgnedto the given parent, and multiply the score

by cany ™ =.

Thepaametersz, y, and z arecorfiguralle. In our experiments,
we get the most predidable, near-optimalperformance acrossall
workloadswith z ~ 2 and y = z = 0. However, thee are indi-
vidud workloadsfor which differert va uesperform better.

In Figure 5, ech B — C child call hastwo possible A — B
paents, but each child hasone paren for which the scoreboad
includes a peak a the medum-lengh delay (¢; — t; and £y — t2).
Basd on this inference FindNestedPdrs assigrs eahh B — C
child cdl par to one of the A — B paent call pairs, as shown
with the solid and dashedlinesin thefigure. Theoverlapping-child
penalty ercouragesFindNestedRirs to assign the two childrento
differert parents. Tie sooreswhen corsideringparents for a given
child arebrokenby asdgning thechild to the earliest tied parent.

5.1.1.4 Creating andaggregating call paths.
Thefinal step, FindCallPaths coales@sthe causl relaionships
foundin step(3) into cdl paths, and kegps aggegatelatercy stat-

istics for eath path patern. We usehashtalde Tpa:ns to find pah
paternsquickly.

The lateng/ of a noce is the total time spert in proessng at
thatnode, including a any nodestha it calls. The call_delay of a
nodeis computedasthetime between thecdl to its parent ard the
inferred causally-related call to this node

5.1.2 Timeand spacecompleity

Finding call pairsislinearin bothtimeandspaein the sizeof
thetraee: each trace ertry is examinedonce and putinto one call
par. Finding nestedcall pairsis linea in both timeard spacein the
total number of nestingrelationships Thisnumbe istheprodud of
thenumberof trace entriesand themean per-nodeparalleism dur-
ingthetrace. We ddine per-nock paralelism astheaverage numter
of candidate parents for eachchild (seeSedion 5.1.1.3). Creding
ard aggregating cdl paths is linear in the numbe of mesagesin
thetrace: eaty message eithe beginsanew cdl pathor belorgsto
exactly oneexisting call path. Overal, thealgorithmislinearinthe
numberof mesagestimesthe mean per-nock parallelsm.

5.2 The “convolution algorithm”

Unlike the neging agorithm, our secmnd algarithm finds causal
relationships by corsideing the aggregationof multiple mesages,
ratherthan by examining messges individually. The algaithm
sepaaes a whole-systemtrace into a set of per-edgetraees, and
treatseach of the per-edjetracesasatimesigral. Thecentralidea
of thealgaithm is to convert tracesinto time signalsard then use
sigral proessingtechriquesto find the crosscorrelationsbeween
sigrals. It conddersthetrace of mesagsfrom A to B sepaately
from the traceof messigesfrom B to A, sothis agorithm canbe
usedontracesof free-form message-bagdcommunication, not just
RPC-styletraces

Thereallts of thisalgorithm are directedgraphs in which anode
might appear severa times(eg., A - B -+ A — C). To avoid
confusionbetwea thegraph of thedistributedsystemitself andthe
output graph we usethe term vertex for thegraphverticesard node
for thecomporentsof the sygdem.

Figure 6 summaizes the algorithm usng pseudo-code Given
arootnode ¢z and a messaagetrace T', the algorithm first credes a
vertex z; in the outputgraph. Thenit corsides the mesages with
saurces: for eachdifferert degination noce j in those mesages,
thereis a causalrelationship between : andj, so thealgorithm cre-
atesavertex z; andaddsanedyefromz; to z;.

Thealgorithmthencontinuesthe path from 5 by calling Proess-
Node. Procelure ProcesNade calls FindCaisedMesages to find
the ses of mesageswith sourcej thatappearto be cauedby the
mesayesfrom : to j. Ead setcontains messageswith a singe
destination node k ard acomma dday d: the setindicatesthata
mesaye from j to k wassen exactly d time units after amessage
froms to 7. For each set, it addsa vertex z, with label & ard edge
(z;, ) with label d to thegraph, andrecursively cortinuesalong
thepah from k (i.e.,it credaesthegraph in depth-first order).

Fundion FindCaisedMessayes is the heat of the adgorithm. It
computesthe cawsd delaysd, which are time shifts betweea the
mesayesarriving at 7 ard the mesagsleaving j. To find these
time shifts, it corvertsthe mesagesV from< to j into anindicator
fundtion s, (). Thisfunction is definedto be

s1(t) = 1if V hasamessagein timeintenal [t — €, t + €]
0 otherwise
where e is asmall fixed corstantand[t — ¢, t + €] is ashortclosed
interval. It similarly corvertsall mesages sent from node 5 into
anindicatorfunction sz(t). It then computesthe crosscorrelation
C(t) of s2(t) andsi(t). C(t) is defined to be the convolution
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procedure FindPahsFromRmt(z)
T; := trace of messgeswith sources
output_graph := gragh with onevertex z; labeledi
for each destination noce 7 in T; do

V := mesaesin T; with dedination 5

addvertex z; labeledj andedge (z;, z;)

to outputgraph
ProcesNade(j, z;, V)

9. procedure ProesNod(j, z;, V)

ONogRrWONE

10. T; := trace of mesageswith souce j

11. O1,...,0,, 1= FindCauedMessages(V, T;)

12. forn := 1tomdo

13. k := O,.nade; W := O,,.mesages

14. d:= O,.dday

15. addvertex z, 1abeledk ard ed@e (z;, zk)
labded (|W|, d) to output.graph

16. ProcesdNoddk, zx, W)

17. function FindCaisedMessages(V, Z)

18. m:=0

19. C := FindCarelation(V, Z)

20. find pasitions of spikes of C(t)

21. for each spike postion d found do

22. Z = mesayesin Z with atimestampequd
to sometimestampn V shifted by d + v

23. for each degination nodek in Z' do

24. m:=m-+1

25. Op.nade:= k; O,,.delay:=d

26. O, mesages :=mesagestok in z

27. return 01, 03,...,0m,

28. function FindCarelatiorn(V, Z)

29. s; := indicatorfunction for V'

30. sz := indicatorfunction for Z

31. return crosscorrelation(sz, s1)

Figure 6: Pseudo-codefor the convolution algorithm

of s, and the time inverse of s,%, which is why we call this the
“corvolution algorithm? Roughy spe&ing, C(t) hasa spike at
postiond if ard only if s (¢) containsa copy of s; () time-shifted
by d. Figure 7 shows the convolution for an example s, (t) and
Sz(t).

To detect the spikes if ary, in C(t), we compue the meanand
stardarddeviations of C. We conside a pointto be a “spike” if it
isalocd maximum N stardarddeviations above the mean,whee
the parameer N is a small number (e.g.,4). Theremay be mary
swehlocd maxmaclosetogeher. Ratherthan corside each oneto
be asepaate spike, werequre atleastonepoint thatis lessthan$
stardarddeviations above themeanbetwea spgkes whereS < N
is anothe small numter (e.g.,3). Among the candidae points for
agivenspike, we choos thelargestto regresert thespke.

5.2.1 Discretization of theindicator function

Theddfinitionfor s, (t) assumestha ¢ isacontinuaistimepara-
meter In practice, we needto disaetize time. To do so, we chocse

'The corvolution of two functions £ (¢) ard g(t) is anothe func-
tion, dencted f ® g(t), defined by f ® g(t) = ¥ f(u)g(t —
u)du. The discrete version of this definition is (f ® g);i =

+ oo
jm—oo Jigi—i-
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Figure 7: Example of convolution output, showing two spikes with
bold lines. The x-axis representsthe time shift; the y-axis roughly es-
timates the number of messagsmatching a given shift.

atime quantum g andthentreatt asanintegermultiple of . The
definition of s, (t) isthen modified asfoll ows:
s1(t) = squarerootof numberof mesagesin V during
timeintenal [tu, (t + 1)u), wheret is aninteger.

Severaldiscretizations are possble but the above ddfinition pro-
ducesthemog accurateresultsandis whatwe implemened. Note
that s; () can be represented by an array. When therearetime
quantawith lots of mesages if s1(t) = z and s2(t +d) = z
thenthe (disaete) convolution of s, (t) and s, (—t) at position d
includesan z* term. Thesquareroot in the definition compensates
for this square.We similarly change the definition of sz ().

5.2.2 Dealing with delayvariances

The algorithm deseibed so far peforms best when the node
ddays have little variance. For example, for each mesage from
A to B, B sendsanothe mesageto C after the samefixeddelay
Whenthe variance is significant, we can get better resuts by in-
cresingtheparametew in line 22 of theagorithm, to allow delay
variations of that magnitude

5.2.3 Dealing with undesiable paths

Further improvements to the corvolution algorithm remowve
“noise” (low-frequency pathg, suppres the detection of acddert-
ally short pathsand of cycles and suppress edges with negative
apparen delay Spaelimitationspreventusfrom desaibing them
here.

5.2.4 Otherimprovements

Our implemenation of the corvolution algaithm includes nu-
merousothe feauresto improve accuragy. Forlackof spaewe do
nat describethee improvements, but the measirementswe present
in Sedion 7 reflect ther effeds.

5.2.5 Timeand spacecompleity

The convolution agorithm must storethe m messages in the
trace,andthevectorscontaining disaetized indicatorfunctions At
ary time, thereis a congant numberof suchvedors. The size of
eaxhvectorisbourdedby S = T'/u, whereT is theduration of the
longesttraceandy is the time quantum. Herce, the overall spae
complexity isO(m + S).

Thetime complexity of the algorithm is propationalto thetime
to traverse the trace and the time to compute convolutions of dis-
cretizedindicatorfundions. Convolutions of vectorsof size S can
becomputedin timeO(S log S) usingfad fourier tranforms. The
number of timesthe trace is traversel and a corvolution is com-
puted is proportiond to the numbe e of edgesin the outpu graph



G. Hence the overdl time comgexity is O(em + eSlog S). In
pradice, wefind thatthesemndfador, e S log S, terdsto dominde
the first.

5.3 Comparison of thetwo algorithms

Ourtwo algorthmshave different trenghsandwe&knesgs Of-
ten thee strengthsare comgementary: sometimesone algaithm
works better, sometimes the other Here we contrastthe algorithms
in termsof their utility.

53.1 RPCyvs. freeform messages

The nesting algorithm explicitly works only with sygems that
use RPC-stylecommunication. The corvolution algorithm can find
causd relaionshipsin any form of messgye-basel system. The
limited applicability of the nestingalgorithm is not without bere-
fits, thouch: becaiwseit “knows” that a system is RPC-bad, it
providesamorecorciserepregrtation of such systemsthan coud
the convol ution a gorithm.

Somecommonforms of RPC-basd systemsposea probdem for
the neging algorithm aswe haveimplematedit, andcurrertly can
only be andyzed with the corvolution algorithm. If a systemfor-
wards RPCcallsor returnsagymmetrically (e.g.,4 cdls B, B for-
wards the cdl to C, and C replies diredly to A) then we fail to
detect this as asinge RPCcall. Also, if acallednoce rediesto a
cdl beforisauingacauslly-relatedsubsequert call, thereis noob-
viousneging relationship betweenthetwo cdls. (This canhgppen,
for examge, when an intermedate node uses dd ayed write-back
caching) We bdieve thatthe nesting al gorithm canbeexpandedto
deal with thesecases but doingso is futurework.

On the other hard, the convolution algaithm hassame draw-
backs with RRC-style path patterns. Given a path pdtern A —
B —» C —» B — A, thealgaithm will not only report this path,
butaso A - B — A. Thisis becausethee is a cawsd relation
beween A — B ard B — A. If anode gppearsmary timeson
a path, the algorithm will report a large numter of derived paths
that arenat very interesting. We bdieve it is possble to automat-
ically filter out such paths,while pre®rving legitimate paths by
usng frequency courts, thisis futurework. Theneding algaithm
correadly findstheright numberof instanesof each pattern, aswe
show in Section 7.5.2.

5.3.2 Rareevents

The convolution agorithm looks for spikes in the cros correla-
tion of two signals Therefore, it canrot be usel to searchfor rare
events, especially thosewith high delayvariance

The nesting algaithm explicitly andyzes every RPC mesage
for itsrelationship with othe mesages, andtherefore can find rare
everts. However, distinguising therare eventsof intere$ fromthe
morefrequert but uninteresing eventsis still anunsolvedproblem.
Al so, thescaeboad medarism describedin Section 5.1 currently
biasesthea gorithm away from rareevents: they will befoundmog
easily when there are few overlappng calls among the samenodes

5.3.3 Detail requiredin traces

Our tods would ideally require no informationabou mesage
formas. In practice, this god meansthat the algaithms shoud
use only information available from widely deployed standhrds
with sdf-describing formats. The convolution algaiithm effect-
ively meds thisided; it requiresonly timegampsard serderand
receveridentifiers.

The nesting algaithm further requires that traee entries be
markel as eithe RPCcdls or returns (In a few cas, this in-
formation canbe inferred based on a priori knowledge of addess

formas, sud as UDP's “well-known” port numbers.) The d-
gorithm also performs much betterif the trace systemcan extract
cdl identifiersfromthe RPCmesayes

5.3.4 Timeand spacecompleity

As disaussed in Sedion 5.1.2 thenesting algariithm runsin time
ard spacelinearin the numbe of tracedmessayestimestheamount
of padlelism in the trace. Gererally, the trace length (in mes-
sgyes) dominates Aswewill show in Section 7.6, pradica running
times are quite lov—mucdh lower than the duration of the traces
themelves—and the space overhea is morelikely to bethelimit-
ing factor.

The cornvolution algorithm, as discussel in Sedion 5.2.5, has
space comgexity linearin thelength of thetrace(measured either
by messagecouwnt or totalnumbe of time quarta, whichever is lar-
ger), with amodeg congant factor. Runring time is the dominant
costfor thecorvolution algorithm; aswe show in Sec¢ion 7.6,it can
be much slower thanthe nesting algaithm. In pradice, thereis a
tradedf betweenincreasedpredsion of the delayresults(decreagd
u) and longe runningtime.

5.3.5 \Misualization

The two agorithmsprovide different visudizations, even when
applied to the sametrace. For RPC-basd systems the nesting al-
gorithm providesa morecompad outpu, becausethe convolution
algaithm doesnot combinecalls andreturnsinto onegraph edge

5.4 Visualization of results

Thevisudizationswe show in this pgperareratherprimitive, in
the form of graphs prodiwced by the “dot” program[8]. We use
similar but notidertica formatsfor the outpu of both the neging
ard corvolution algaithms.

Root
Mean latency for entire path patts

Total count
Total latency

B
Mean latency in B and all childrer

Mean latency between
entry to B and entry to C

C D
Mean latency in C Mean latency in D,

Figure 8: Output format for nesting algorithm

Mean latency between
entry to B and entry to D

The output of the nesting algorithm, as depicted in Figure8, is
a graph showing the procedure cdl hierarcly for a specific causal
pah patern. The total numberof instances for the pattern,and the
total latency for this pattern, are shown next to thefirst edge in the
grafh. A noce's ellipse includes its nameand the meanlateng for
all activity in thenode andits children. An arrow represerting the
direction of a cdl is labeledwith the mean latercy betweea entry
into the parert node and entry into thechild node.

Theneging algorithm adudly computes thefull distribution for
eah latency, rathe than just the mean. We show only the mean
in our “dot” visualizationsto avoid cluttering the outpu. We have
starteddevelopingan interadive visualization tool thatprovidesa
richerdisplay including dday distiibutions This tool alsoallows
the user to sort pathsby frequercy or tota lateng, and highlights
theindividud nodestha contributethemog lateng.
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C->B count
delay 1, ..., delay_n

B->C count

B->D count
delay 1, ..., delay_n

D->B count B->A count

delay 1, ..., delay_n

delay 1, ..., delay_n

delay 1, ..., delay_n @

Figure 9: Output format for convolution algorithm

With the representation of Figure8, intemal delaysas shown in
Figure2 may be cdculatedfromthenodeand edge |abels. Ourin-
teractive tool smutareowsly displaysboth thetree structured view
of apathard atimelineview, which makes the internal delays ex-
plicit andclearly showsthe parallelsm betweencalls.

The neging algaithm inherently gereratestrees wherever a
nock cdls morethan onechild. The cornvolution algorithm views
every pah asalinea sequenc of nodes sametimes with multiple
visits to a node Figure 9 shaws the outpu format for the con-
volution algorithm given the same RPC-stylesygem depictedin
Figure8. Eachdirectededge is labeledwith a setof ddays, repres-
erting thetime(s)thatthe precedng node spendsbefore serding a
mesaye to the next node (i.e., the shift(s) found for the spike(s)).
The delaysare orderedby declining frequercy. Each edgeis also
labded with the total count of messages with those dd ays.

6. OBTAINI NG TRACES

Our approach depends on tradng all (or nearly al) of the mes-
sagyesbetweennodes in the distributed system. This requrement
leads to numeous chdlenges This section desaibes the tech-
nigueswe are developingto obtain traces; we discussspedfic trace
sdsin Section 7.1.

6.1 Generalconcerrs

Our blackbox asumgions smplify the tradng problem, be-
causewe ned relatiwely little informaion abait each message.
The corvolution algaithm neels just the timestamp sencer, and
recdver. The neging algaithm aso nealsto know whether mes-
sgyesarecdls or returns, and can bendit from call identifier in-
formation (e.g., from RPC heades), which improves the accuragy
of call-par matching Therefore, we neal not par® the messiges
too deeply into theprotocol stack

We might ned ratherlargetraee setsto analyze certain distrib-
utedsystems. The mesage ratemight be quite high ard the trace
durationnecessary for revealing interestingcall pathpaternsmight
be long. While hardling large trace sets createslogistical chal-
lenges, the prodem remans feasible because large traces stress
ageds of compuer systemstha scale wdl: locd areanetwak
bandwidth,and storage bandwidthard capadty.

While asutabletrace cdledion andaralysissygem might rep-
resent asignificant capital cost above that of the sysem unde test,
we interd this hardware for useduring debuggng. It isappropriate
to inved in debugging equipment tha can be re-usd for various
systemsunder development, epedally if thisinvestmentincreases
programme prodtctivity.

The term “black box” can be apdied with more or less rigor,
deperding on the grandarity of the nodes of interest andon how
had it is to extract theminimal mesage informaion tha we nee.
For exampe, the developersof the systemslisted in Section 3.1
use “bladk box” to mean“application-cale gereric.” We aspire to
amorerigorots black-box ideal,a tool tha requiresabsdutely no
syppat from the nodes of thesygem, requiresno mesage-speific
knowledge beyond widely-deployed standads, and does nat per-
turb system performarceatall.

Pasdve nework tracing can approXximatethis ideal, but canrot
always expose the nodes at the appropriate levels of granularity.
If the nodes of interes are, for examge, proceses or J2EE ob-

jects,we mug obtaintraces more intrusively. Non-pasive tracing
compromisesour zeroknowledge, zero-instrumetetion, andzero-
perturbationgoals, but if thecogs canbe minimized thenour tods

arestill useful. Our approach dso hastheadwantag, over systems
(sudh as in Sedion 3.1) requiring infrastructural changes thatwe

can memge traces from both pasive moritoring and moreintrusve

moritoring to get a unified view of a complex systembuilt from

“legacy” compaerts.

We aredeveloping techriquesto obtain traces at various layers
of asystem, ard with varyinglevel sof intrusvenes. Theseinclude
passve network moritoring, middlevare instrumemation, kernel
instrumetiation, ard (in certaincases) apdication instrumentation.
We de<ribe our specific approahesin thefollowing sections.

6.2 Passve network tracing

Whenthenodescommuncatevia anework, we canobtainmes-
saetraces through passve network tradng (or “packet sniffing”).
Passive tradng, at leag in principle, does nat perturb the system
under teg, andrequresno software changes to the sysem. This
erablesits usein risk-averse produdion ernvironmentsandon leg-
aoy systems. Passive tradng is therefore our prefered mode

However, while we have sucessfully cdleded ard andyzed
pasdve traces, nore of the experiments repatedin this pager are
based on passive traces, so (given space constraink) we will only
briefly disauss the issuesasciatedwith pasive tradng.

A padket tracerequires saneprocessng to beuseful for our ara-
lysistools. Prodemsindudeidertifying nodesbased on addresses
at various protocad levels; finding mesage bourdarieswhen mes-
saes spanpacketsor start in themidd e of padets; andidentifying
cdls and returns,andextrading call identifiers for RPCprotomls.
Theseare not novel challenges many reseachers and commercial
prodictshave doneelalorate aralyssbasedrecoveringor inferring
high-level informationfromraw packettraces([7, 21].

6.2.1 Mechanicsof passivetracing

With older broadtast-bus LANS, it was eas/ to passvely capgure
all packets from one monitoring paint. Modern switched LANs
male the prodem harder We see two possible approaches

Port mirroring , which is supported by many switch vendors, a-
lows a switch to be configuredto copy (“mirror”) someor
all padkets to a dedicated monitoring port It allows us to
trea application hogs ertirely asbladk boxes(we need not
ingall any software on thos host9 and shaild nat perurb
thesygem unde teg.

Packet sniffing at each parti cipant hog applies when the hogs
support progams suc astcpdump([14]. After trace cgpture,
thetracesare megedin postprocesing (see Sedion 6.5).

High padket ratescan overload a sriffing systemor itsincoming
link, becatse we canna flow-control the messages to avoid this.
Thesalalility of ourapproad dependssamewha on thisissue a-
thowghouragorithmstolerate somepacketloss (seeSedion 7.5.5).

Resarclers a the University of Waikato and Endae Techmo-
logy [17] have achieved acapture rate of close to 20M packets/se.
usng a commoditydud-CPU server and special-purposenetwak
cgpture cards. We experimented with a relatively small server
(AlphaSever DS10,618 MHz, Tru64 UNIX V5.1A) running tcp-
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dump andfound tha it could cgpturedightly over 25,000 packets
per secord (albeit with somelossey.

6.3 Tracingin aJ2EE sygem

Many moderndistiibuted systemsarebuilt on 2EE [25], using
Enterprse Java Bears (EBS) to reresent comporents. Membe's
of the Pinpdnt projed (seeSedion 3.3) have tools to trace inter-
EJB calls ard returns andthey graciotsly sharedthdar code with
us Their tracing system [16] tagsall mesages on a call pathwith
a singleendto-endreqled-1D, but we canignorethe end-to-end
information, to testour algorithmsasif we only had simplertraces

J2EElevel tradng imposes rurtime costs and perturbs system
peformane. The Pinpint tools are not optimized for our pur-
poss and might never be cheap enaughto run full-time in a pro-
dudion environment. However, our tods are meant for perform-
arce delbugging, nat system management, so tracing neednot be
erabledfull-time. A systam owner can enable tracingonly during
a dehugging phase exactly the time when the owner is willing to
pay the price of same extra short-termoverheal in theintereg of
sdving along-term problem.

6.4 Application-level tracing

Our black-bax approach does not normally involve madifying
applications to gereratemessige tracesdirectly, but we are not too
proudto usesud traces when available. Someapplicationsalready
generatejn normal operation suficient tracingor logging inform-
ation for our purpases(perhapswith sanepog-proessng).

6.5 Mergingtraces

We might neal to merge traces cdleded at different pointsin
the distributedsystem(e.g., padket sriffers at multiple hods) or at
differert layers (e.g.,both padcet sriffing and 2EEtradng).

We smglify the trace-merdng process by adgting a uniform
repreentationfor traces for example:

timegamp operation sendea rcw  ID

1047680084.482205 CALL_SENT nodeAnodeBid37

1047680084.4835/5 RET_SENT  nodeBnodeAid37

We then merge theindividual traceentriesin timegamp order. Both
algaithms desribed in Section5 canhande minor clock skews,
although synchronizel clodks improve our accurag. Mills [20]
has shown thatthewidely-depgoyed NTP proto®l can synchronize
clocks onthesameLAN with anRMS error of under 1 msee., and
over the globd Internet “usudly lessthan 5 ms” This accuragy
isuaudly more than sufficient, becausetracetimegamp resdution
sddomisaslow as1 mse.

This leaves severd problems, such as duplicate entries (e.g.,
from sriffing packetsat both ends of a link) ard node-namingin-
consisteriesbetweentracesmadeat different levels. We have de-
velopal techniques to solve several such problemsbut we have not
yet testedthem adequatdy.

7. EXPERIMENTS AND RESULTS

In this section, we describesevera experimentstha shav how
our tods might be usal in pradice. We aso desribe experiments
to validatethe accurag of ourtools.

7.1 Tracesets

We woud like to test our tools on traces from a heavily-used
“real-world” gpplication, such as amulti-tier Web server. However,
aaxes to swch sygemsiis tightly controlled, ard we have not yet
sweceededin obtainingthenecessary traces.

Therefore,in order to debug ard testour agorithmsandtrace-
cdlection techniques, we have ohbtained severd traces of varying

degreesof realism. Herewe desaibe the tracesetsand how they
wereohta ned; subsequent sectionsdescribe whatwe learnedfrom
exhtrace set.

Notetha the® traceswere nat calleded usingpurdly bladk-box
tecmiques. Raher, we have chosen traces tha can demorstrate
theaccuracy of our dgorithms by starting with “white box” traces
ard then corverting them to a “black box” form (i.e., by remov-
ing informaion) we are able to explicitly evaluae how well the
algaithmswork (seeSedion 7.5).

7.1.1 Tracegeneator

In orde to teg our algorithmson specific cases, includingtrace
seerarios we expect to be challenging we wrote “maketrace;” a
tracdet-based trace generator A tracelet is a template for an
ordeed sequerce of messages betwea nodes,with parameterized
Gawsdan delaybeween mesages. A tracdet can represent a spe-
cific cawsd path patern throudh a distributed system; it can also
repregntan explicit interleaving of severalcausd paths if wewant
to test how well our algorithms disertangle suchan interleaving.

Maketrace takesa corfigurationfile thatspecifies a se of trace-
lets, and for each traclet a paameterzed uniformly randam
dday betweersgjuentialinvocationsg(representing aclient's “think
time). The configurationaso specifies how mary inganes of
exhtracletsequenerun in parallel. Maketracethusdirectly con-
structsarbitrarily longtraceesby instantiating traceets, ratherthan
by generating tracesas a side-efect of simulating a distributedsys-
tem.

7.1.2 J2EE traces

OurJZEE traces congst of inter-EJBcdls in the PetSorev.1.3.1
example application [24], running on a single-nod JBossv.3.0.6
saver [15], on a2-CPU1GHzPetium 11 with Linux 2.4.9.A load
generatorran on the sane host, emuating 24 clientswith several
workload profilesand ameaninter-requestthink time of 7 secnds.

We obtainedtwo traces, each abaut threehourslong ard indud-
ing about 1.3 million mesayes (Ead inter-compment call results
in two messages.) In onetrial, we artificially increassed thedelayin
ore leaf comporent, and were ableto find the added delay easily
usng both of our algorithms However, for most of theexperimerts
repatedinthissedion, weuseda2000-secord prefix of eechtrace;
this avoids excessive run times for the corvolution algorithm (see
Section 7.6).

7.1.3 Received-hadertrace

While searchingfor a large, red-world apgication tha is not
primaily RPC-baed we redized that emal trarsit service is
idedly suited to teding the convolution algoritim. Because maost
emal messages passthroudh severalseners,and almog all severs
ad “Reeived” healers (with source destination, andtimegamp)
to eachmesage, we canextract these Re@ived healersandtreat
themindividually as entriesin atrace of inter-nodemesaetrars-
missiors.

(Weempladzetha thisisnot thebed way to use Reeived heal-
ersfor causl-pathandysis of anemail system.By treaingtheRe-
cdved headersof agivenmesage as separatetrace ertries, rather
thandirectly extractingthe paththemessagehad foll owed, onecre-
atesan unnecessaily hard problem. However, this problemis ex-
adly the onetha the corvolution algaiithm is mear to solve, so it
is agoad test of our approach.)

One of the authors logged dl of his incoming mesag heal-
ersfor thisexperiment. He getslots of email (parly becatsehehas
severalemail addresesthatreolve to the samemailbox, andlots of
spamtamgetsmore thanoneof thee addreses). Over two morths,



InProceadings of 19th ACM Sympaosium on Operating Sygems Principles, Bolton Landing, New York, Octobe, 2003 11

hereceaved 11,683email messagesincludng a total of 81,044us-
able Recdved healas. A smdl numter of Received headerswere
excludedbecalseof unpaseale timestamp, or because they were
from geneic hognames such as“localhog” or “unknown,” that
would have creded fal se conredions betweermary paths Wealso
excludedall forwardinghops outsidethecorporate email sydem,to
avoid anexplosionin thenumber of pahs.

7.1.4 Othertraces

In addition to the traces de<cribed above, we have applied our
algaithmsto severalother tracesfromreal systems Theseindude
onegatheed from a distributedfile system,and andher from in-
strumentedintermethod communicationin an embelded sysem.
We were able to find the corred causal pathsin thesetracees We
do not de<ribethesefurther bath for space condderations and be-
causethereaullts do not illustrate ary novel issuesother thanthose
revealedby the tracesde<cribed alove.

7.2 Reallts: Traceet-based multi-tier traces

client

web server | | web server |
1 ws2

AN

authentication
server

|WS

application application

server server
AP1 AP2 AUTH

ST\

database database
pB1 Server pB2 Server

F—>

Figure 10: Multi-tier configuration (simplifi ed version of Figure 1)

We used malketraceto geneate a varietyof traces smuating the
multi-tier corfiguration shown in Figure 10. Samne of thesetraaes
have anadditional 200 msec dday inserted at node W2, between
the serial callsto AUTH ard to eitherAP1or AP2, so thatwe can
test if our algaiithms correctly measure sud delays. We refer to
thes asaddel-delaytraces.

To test the nesting algaithm, we gereratednormal and added-
dday traces including albout 200,0® mesages each. Figure 11
showsthereaultsfor thenormalcase, with themostfrequentcausal
pah paternsrarked left to right in orde of decliningtotal latency.
While this figure is too dens to depict the paticularsof ary spe-
cific patern,it shows how aload-bdancing configuration, sud as
in Figure 10, can gereratean exponertial increaein the set of
pahs. In effect, there areonly a few abgrad pathsin this figure,
ard a good visudization tool (futurework) would clustertogeher
isomorphic graphswith similar countsanddelays

We thenranthe nestingalgorithm on the added-delaytrace Fig-
ure 12 shows the “normal” ard “added-deéay” outputfor onespe-
cific causal path pattern tha includes the WS2 noce. Onecan eas-
ily infer from the ddays on the gragh edges (egedally the edge
beween WS ard APJ) thatthereis approxmaely 200 msec of
addeddelayin Figure 12(b), albeit dightly underestimatedy the
algaithm.

We aralyzed the same traces with the convolution algarithm
(¢ = 0.1). Figure13 shows theresults, for the same causal path
paternasin Figure 12 This algaithm geneates long pathsfor
RPC-stylecall patterns, beauseit looksat the call and returnmes-
sayesindeperdertly, rathe than as unified RPCs. However, it is

(a) Normal trace

(b) Addeddelaytrace

Figure 12: Multi-ti er resuts from the nestingalgorith m

guite good at asdgning the blameto the correctnode (marked on
the edgebeween WS2and AP1, in bold), andat corredly measur-
ing the extra delay.

7.3 Reallts: J2EE traces

We ran two traaes of the PetSbre system: one with no added
dday, the otherwith a constart 50 msee. dday added in each call
of the/mylist.jsp noce.

Total:
5.591 sec.
125x

Ipetstore/category.screen?category_id=FISH
0.045

Com.sun.j2ee.

waf.view.template. T¢

0.041

JspServiet
0.037

0.001

Itemplate.jsp
0.036

0.012}0.018

JspServiet
0.006

0.031

JspServiet
0.003

JspServiet JspServiet
0.008 0.005

0.001 0.000 0.001 0.001 0.001
Ibanner.jsp Isidebar.jsp Icategory.jsp Imylist.jsp Ifooter.jsp
0.007 0.004 0.005 0.003 0.002

Figure 14: PetSore results, normal configuration (neging algorith m)

JspServiet
0.005

Figure 14 shows one freqiertly-invoked causal path pattern
found by the nesting agorithm, although nat the maost frequent
ore. (The corvolution algorithm produces smilar results.) Fig-
ure 15 shavs the sane pathwhenexcessdelayis insetedin node
/mylist.jsp, shown in gray. Onecan clealy seethe excess when
comparingthis diagramto Figure 14, notonly atthedow node but
alsoin its parentsand in thetotalsfor the entire pah. (The excess
appeas to beslightly large thanthe nominal50 msec dday ad-
ded; thismight be anartifact of Linux's 10 msecclodk grarularity.)

7.4 Reallts: Receved-headertrace

We ran the cornvolution algorithm for the Recdvedheader
(emaitheacer) trace  With a quantum of 30 sec., the algaithm
repats all ddays aszero, implying real delaysbetwee zero and
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Figure 11: Expanded multi-ti er results from the nestingalgarith m (you are not expectel to be able to read this)
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Figure 13: Multi-tier resuts from convolution algorit hm
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Figure 15: PetStoreresults,constant-delay config. (nesting algorith m)
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29 secs. As thequantumis deaeasal to 5 sec., the agorithm re-
portssomesecanday spikesabove zerosecs; Figure16 stowsthe
mog frequert paths from this trial. Node “names in this figure
arearbitrary integers.Note thatthe primary spkesonall pahsare
at zero, becatse mog of the time mesayesare forwarded imme-
diately However, some pahs show se@ndary sgkesat 10 or 15
secords We verified from the original trace thatthe® spikes are
accurate.

7.5 Reallts: Validation of accuracy

So far we have discussed our results primarily in quditative
terms Herewe attemg to quantify the accuragy of our algorithms.

7.5.1 Metricsfor evallating accuacy

To evalugetheacairag of our dgorithms wedeveloped ase of
simplemetiicsthat quartify thediscrepandes beweenthe“ground
truth” of a trace(the actud cdl pahs traversed during the trace)
ard thecall pathsinferredby oneof our algaithms. Thes disaep-
arciesareeither falsenegatives(theagorithm failed to find a path)
or false positives(the algorithm inferred a paththatwas't there).

We cancomputefalsepositive or negaiveratios basedon counts
of pah paterns path instarces, or messiges. For example,if the
adual systemexeautedthe pathA — B — C — D twice, but the

523 512
@ 67 0,10 20 0 @

768 318+317
@ 67 0, 10 38 0 @

460 439

766 315+311

489 478

738 299+295

Summededgecouwnts represen the combinaion of pahs for accidertdly
duplicated messagedeliveriesdue to a mail sener configuraion error at
node 38.

Figure 16: Received-header tracereailts (convolution algorith m)

algaithm found oneinstarceof A —+ B —+ C — D, oneingtance
of A — B, andoreinstarceof C — D, then:

e Courting path paterns the dgorithm had no falsenegdives
andtwo false postives.

e Courting pahingances,thealgaithm hadonefalsenegative
andtwo false postives.

e Courting messiges the algorithm failed to asaibe 3 of 6
messaagesto the correct pah (false positives = false nega-
ives in this ca®).

Of course to compue theseratios we need a representation of
the grourd truth. Fortunately, the neging agorithm is alle to pro-
duceguaarteedcorrect pahsif we“chea” and tageach trace mes-
sagewith apah-inganceID value.We can do thisfor our syrthetic
traces(from Maketrace) and our PetSbre traces, so we can runthe
algaithm once with path4Ds and once withou, andcomparethe
resuts. We canalsoextract exact paths from the Recdved-header
trace,usingMessage-ID email headers,and comparethose pahsto
theoutputof theconvolution algaithm. We canna, unfortunaely,
evaluatefalse podtive or negative ratios for other kinds of traces
(e.g.,those obtaina by packet sniffing).

Our algorithmstendto fail by geneating a large variety of false
positive path paternswith low instancecounts,amang ase of ac-
curate paternswith high counts.Recdl tha our primary goal is to
idertify the mog frequertly execued pathsin the distributed sys-
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tem, so a useful tool will rank-orde the inferred path paterns by
countandthenprune away maostof thelow-frequency path patterns
Therefore, we examinewhetherthetop N paternsthatreman after
pruningmatd thetop N grourd-truth patterns, or whethe pruning
causes some of thosetop N groundtruth patterns to be omitted.
For a givenalgorithm and trace, we canplot thenumber of omitted
grourd-truth patternsasa function of N.

100
o : 0% tolerance—B—
= [ 0,
S 80f!| . 2% tolerance—e—
(] R
= L
s 60 [ ¢
()} L
g
o 401 .
% /N 4N
L 20+ .
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Top N required to match

Figure 17: Falsenegtive path pattern rate vs. pattern pruning

Figure 17 plots the results for the nesting agorithm over a
maletrace-geneated trace for the multi-tier configuration. (This
trace included 202498 mesageswith a mean paallelism of 42.)
The falsenegative ratein the figureis bounded in mod casesby
1/N, indicating thatmost false negaivesarethe result of nea-ties
in theranking. (Our belief that thes are redly near-ties is con-
firmedby the points plottedfor “2% tolerarce; where weignored
falsenegatives whoseinstarce court waswithin 2% of makingthe
top N. At 6% tolerance dmostall fal se negatvesdisappea.) Sev-
eraltrue fa se podtives(at ranks 27 and 28) causeadlitiond false
negatives for high valuesof N, by disgdacing true positives. We
ran the sameteds for smpler synthetictracesandfound no false
negatives except in thecaseof afew nea ties.

Weran similar experimertsfor the convolution algarithm. It also
foundthetop N paths,with similar errorsin thecaseof ties

Our goals dso include accurate measurement of path-speific
latendes internd to nodes Accurate pah inferencesareobvioudy
a prerequisite, so we have placel more emptads on quantifying
pah inferene accurag. However, we have found that even with
relatively high error ratesin inferring paths the latenées we find
for correctly-inferred pathsarewithin afew percert of the correct
vaues.

7.5.2 Testng using pathological cases

Certain special combinations of cawsd pathscan cawse our al-
gorithmsto makefaseinferenes eecially whenmary pathsare
being exeautedin parallel. We devised a numter of pathologcal
cases, depictedin Figure 18, on which we coud testthe accurag
of our agorithms:

Children-paralle hasB calling C twicein paallel. Thisbre&s
all three of the neging algorithm's child-pendty heuristics.
In mog situaions it is our worst case but it becomes one of
our best caeeswhen delay deviations are low, or when call
parallelismis high.

Children-0/2 hasnode B calling node C twice in seriesin one
pattern, while the other pattern has no cdls to C. Thiswasa
hard cas for a simplerversion of the neging agorithm that
lacked a smreboad, and so could nat assignboth C callsto
the samepattern.

Children-d/cc has noce B cdling node C twice in seriesin one

patten, and B calling D oncein theother Thisis a had
ca® for the neging algaithm, esgedally with high paal-
lelism, beaus the child-peralty heuristics wrongly leadthe
algorithmto assimetha B iscalling C ard D in series.
Penalty-breaker includes two paths with multiple calls to the
samechild, and one with no sud call. Also, the delays on
the two longer pathsareiderticd, causng lots of corfused
assgnmerts. This breakstwo of three child-penalty heurist-
ics, andinspired thethird one It demamstratedhe tradeoffs
required whensdectingdefault values for thethreepenalties.

We use theseteg cases, as well as synthetic multi-tier traces,
in the next few experimerts evaluaing the accurag of the neging
algaithm.

7.5.3 Tesing theeffeds of parallelism

As parallel activity increagsin a trace, the neging algaithm
has a harder time corredly assigningcallsto paths The resut is
anincreag in the numbe of false positive pathinstarces inferred
(which can push true pathsout of thetop N). We ran a seaies
of experiments with increasng parallelism to see how this affects
thefalse-paitive rate; Figure19 shaws theresaults. The X axisin
thisfigure is a dependent variable, roudhly linea with theaverage
amauntof paralelism usel by thetrace geneator.

90 r
—&— Children-parallel
80 - o Children-d/cc
70 + —~— Penalty-breaker
—— Multi-tier
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50 |

40
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Figure 19: Effect of traceparall elism on nesting algorithm accuracy

Geneadly the algaithm's performance is moderatelyworsened
by increasng parallelism. Theeffect on themulti-tier caseis same-
wha more pronaunced. For the Children-paallel case increasing
padlelismadually improvesperfomance perhags becausethe al-
gorithm has more opportunity to infer that the child calls arein
padlel.

7.5.4 Tesing theeffeds of delay variation

Maketrace gereratesrandam ddays at each nock in a call, us-
ing a Gaussan distribution. We canvary the stardard deviation of
the distributionsto seehow increaing delay variation affectsthe
falsepositive rate for path instances; Figure 20 shavs the reaults
for the neging algaiithm. Generally, performarceworsenswith in-
cressing variation. The Children-paralleland Children-d/cccases
areespeially vulnerable to variation. Note tha in a real system,
one would not expect all of the node delaysto have the samevari-
arce

75.5 Testng theeffeds of mesage loss

We expect our tod s to be useal with traces cdlected by passve
network sriffing, which is oftenlossy. We can quantify the effects
of mesage losson the accurag/ on our algorithms by compaing
thereaultsof an algaiithm onaloss-freetrace and on asimilar trace
with rancbmly deletedmessages.
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(a) Children-parallel

(b) Children-0/2

(c) Childrend/cc

Total: Total:
179 sec. 304 sec.
3575x 1786x

(d) Peralty-breaker

Figure 18 Causalpath pattern combinations for pathological cases
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Figure 20: Effect of delay variation on nesting algorith m accuracy

The maketrace generator allows us to modé the bursty losses
typicd of network sniffing. The programmodés a sniffer with
a pe&k cgturerate and a finite quaue, and discards packets that
would overflow this queue
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Figure 21: Effect of messag drop rate on nestingalgorith m acairacy

We teged the effect of messagedrops on the peformane of the
nesting algorithm, usng several synthetic traces Figure 21 shows
thereailtsof numeroudrials. Paformaneis expresed asthefrac-
tion of falsenegaive pah instarces We fixed the maximum queue
length at 64 padets, andincreagd the peak capture rate in each
trial urtil the drop ratereacted zero. The neesay capture rates
ranged from 115 to 605 padkets/sec (Notetha the messageratesin
our simulatons are arbitrary ard relatively low.) Each point in the
figure correspandsto a spedfic capture rate;thus both the false-
negative rateard the drop rate are dependentvarisbles

The reallts show tha for low drop rates(below abaut 1%), al-
gorithm performance is unaffected. For higher rates but bdow

alout10%, performance is reducedbut notunaceptable.At higher
dropratesit is notsuprisingthatthe resuts are bad. A real tracing
system, therefore,must be suficient to cgpture mostpackets, but
neadnat be perfect.

7.5.6 Tesing theeffeds of clock skew

To testtheeffectsof clock skew ontraces coleded atmorethan
one point in the network, we wrotea smple progam, “skewer,” to
add pernodeclock skew to an existing trace. We canthen perturb
an unskewed trace by varying amourts to test how our tods cope
with skew. (Skewer is alsousdul to de-kew a real-worl trace;
we use additional information, such asthatobtainel from NTP, to
remove the meanper-nale skews from a multi- point trace)
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Figure 22: Effect of clock skewon nesting algorit hm accuracy

The neging algorithm includestwo featuresfor compensaing
for skew. Firgt, it supparts a configurable skew window tolerance,
which loosers comparisons between timestampswhere they are
usedto egablish neging relationshps. Seond it allows smoothing
of each scoretard ertry, which widens peaks to make the paren-
sdection step moretolerant. Figure 22 shows the multi-tier trace
with varying skew addedat the WS2node (i.e, WS2s clock runs
0 to 60 msec fast), ard a fix skew window of 30 mses. The
“no comp” curve shows inaccuray (false-ne@dive rate) without
skew compensation. The“comp” curveshavsinaccuracy withonly
the skew window eraled; this actudly decresesaacurag. The
“comp+snooth” curve shows the combindion of skew windows
ard smoothing which performsbest for mog ressanate levels of
skew. The“rev, comptsmoah” curve showvswhathappersif WS2s
clok instead runsslow, rathe than fag, by the value on the x-axis.
The vertical marksindicate50 msec and10 mse.; thesearethe
mean call and returndelays respectively, in the trace The neg-
ing algorithmresultsin few fal se negativeswhen skews aresmaller
thanthesum of theskew window (i.e.,one's estimate of worst-case
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skew) andthe actualdelays, but performsbadly for larger skews.

7.5.7 Accuracyof thecorvoluton algorithm

We ran trials of the corvolution algaithm on the Receved-
heade traee, varying the time quantum (i) from 5 ses. to 720
ses We comparedthe output to a grourd-truth graph extracted
directly from the emal messges. Over all of the time quarta we
tried, the falsepositive rate varied betwea 21% and 29%, with
only minor deperderce on the quantum(setting i > 360 yielded
the worst results). However, if we ignore pathstha arerepated
with fewerthan100mesages thefalse positive rate dropsto zero,
exceptfor u = 720. (Notetha suchlarge p values are usless
in ary case, for finding non-zeroddays in thistrace) In no case
did thealgorithm missary frequentrealpahsin thistrace(i.e.,the
falsenegative rate for frequent pathsis zero).

76 Reallts: Executon cods

We measired run time and memory cods for the experiments
in the previous sections. Note tha neither programhasbeen fully
optimized,andthecorvolutionagorithm presentsseveraltradeffs
betweenaccuracy andspeal that may require sometria ard error.

Table 1 shows the costs. Length givesthetrace length in mes-
sayes Duration gives theelap®dtime of the trace MBytes gives
the amouwnt of data space dlocated(not courting stadk or code);
CPU secs gives the usermaode CPU time (kernd maode is negli-
giblein all cases). Thetable a so showsthe (compued) meanper-
node parallelism for the neging agorithm, ard thetime quartum
(w) for the corvolution algorithm. We ran the nesting algorithmon
a 1.7 GHz Pertium 4 running Linux 2.4.20, and the convolution
algaithm on a667MHz AlphaSener ruming Trué4 UNIX V5.1.

We ran experiments to verify the scding propeties desribed
in Sections5.1.2 and 5.2.5. The neging adgorithm's run-time and
spacerequremants should be O(mp), wherem isthetracelengh
in mesayesand p is the mean per-nale parallelism. Tale 1 in-
cludesrows for several different trace lengthsfor eachof two sys-
tems,andsevera p vauesfor onesystem toillustratetheseeffeds.
Codgs are not quite linear in p, probally due to certain congant
spaceoverheads for smdl p, andpoorlocality for large p.

Thecorvolutionalgorithm's rurrtimeis mostly deperdert on the
trace duration and time quantum,andnot muchonthetrace length.
Figure23 shavs CPU time meauementsfor the Received-header
traee, at various time quarta. Thefigure shows thatthesemeasure-
mertsfit the S log S curve,where S isthetrace durationT divided
by the time quantum. We did not run the convolution algaithm
on the longeg traces in Tabe 1; with our currert resairces, the
algaithm's runrtime bemmesprohibitive if the trace duration is
morethanabout 100,000 timesthe desired time precision(i.e., the
time quantum).

8. FUTURE WORK

Themog impartart remaining work isto traceand andyze full-
sale, real-world applicationswith our tools. We are negotiating
with ownersof severd such apgications for accessto thar sys-
tems, but privacy issuesand concernsfor both proprietarydaaand
systemstablity have dowedprogress We exped experimentswith
these traces will forceusto improve the compeence and efficiency
of ouralgaithms,ard to automateor settle thechdce of free para-
meters Ead new tracewe havereceved so far hasledto improve-
mertsin our algorithms

We areextendng our toolsto add severalsigrificart cgpabilities
includingtechiques for locaingthecauses of low-frequency high-
latency endto-endbelaviors. We would adso like to extend our
techniques to hardle lock-based interadions between nodes; we
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Figure 23 Convolution run time vs. time quantum (Received-healer
trace)

want to know nat only tha node A on cdl path P1 oftenwaitsfor
lock L, but alsotha L is usually beinghdd in thesecasesby node
B onpah P2.

We planto develop a sliding window versionof the neging a-
gorithm that proceseesal mesages within atimewindow into path
paterninstarces before proesingmesagesin the next (overlap-
ping) timewindow. This modification would sdve two prodems:
(1) If the systemdemongratesphasd behavior, wheresame pa-
ternis frequentonly in ashort timeintenal but infrequentover the
whde trace thatpatten may be hardfor the user to natice among
all of the other low-freqlercy paterns However, if the pattern
is relatively frequent in one time window, then it could be much
easierto spot. (2) The algorithm saleslinealy in memoryusage
with the numberof mesages but it cannotcurrertly hande traces
with greaer than a few million mesagesand a lot of parallelism.
Windowing would allow proaessng of much morecomplex traces.

The nesting algorithm produces a set of distinct causal paths.
Onemight wantto merge similar pathsto form a sinde visualiz-
ation of the systemasa graph, where an edye betwean two nodes
shows the probaility of a corregpording call pair. Caraso and
Ondna[4] describeandgorithmthat might work to merge paths

Sofar, we have only patially addresed the visualization prob-
lem, but ary truly useful tool will require clever rerdering of the
outputs of our algoritims. Both Magpe [13] andNetLogge [26]
provide simplevisudizations, but it is not clear if these are right
for our purposes. TheCritical Pah Analysstednique of Yarg and
Miller [19] mightalsoprove usdul when applied to the outputs of
our algorithms.

9. SUMMARY

We proposd an approach to performane debuggng for distrib-
utedsystems It differsfrom prior approachesby adopting asstrict
a“black-bax” mode aspossble, andthroudh the useof low-level
traces little semantic knowledge, passve moritoring, and offline
proessng. We have developedtwo distinctly different algarithms,
eaxhwith thar own strengthsand wed&knesses Preliminary results,
based on severd different kinds of traces sugged tha thetools do
prodwce usdul and accurate resuts, ard we are now working on
testingthemwith morerealtraces
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Neding algorithm Convolution algorit hm
Trace Length [ Duration || Mean per-node | MBytes | CPU secs. p | MBytes | CPU secs
(mesaey (secs.) parallelism (secs.)
Multi-tier (short) 20,164 50 1.738 15 0.23
Multi-tier “normd” 202520 500 1.641 138 227 0.01 0.2 6684
Multi-tier “added-delay 196438 500 1.74 134 231 0.01 0.2 6709
Multi-tier (long) 2,026658 5000 1.612 1368 23.97
Multi-tier, pardlelismJow 769638 5,000 1.1%6 54.0 754
Multi-tier, pardlelism-medium 770344 500 5.116 54.2 11.15
Multi-tier, pardlelism-high 775254 50 45.0% 1321 233.61
PetStoe “normal” 252024 1,999 1.32 1938 3.3HA 0.02 26 12780
PetStoe “const-delay 234,036 2,000 1.313 184 292 0.02 25 6301
PetStoe “normal” (full) 1,345538 10,799 1.33L 97.1 17.12
PetStoe “const-delay (full) 1,288223 10,799 1.318 932 16.41
Email heades 81,044 | 5.1 x 10° 5 131 2106
Email headas 81,044 | 5.1 x 108 30 36 338

Table 1. Execution cods

ard theanmymousreviewersfor their proking commaents.
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