
In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 1

Performance Debugging for
Distributed Systems of Black Boxes

Marcos K. Aguilera �
Jeffrey C. Mogul
Janet L. Wiener

HPLabs,Palo Alto�
Marcos.Aguilera,Jeff.Mogul,

Janet.Wiener � @hp.com

Patrick Reynolds
DukeUniversity

reynolds@cs.duke.edu

Athicha Muthitacharoen
MIT Lab for ComputerScience
athicha@lcs.mit.edu

ABSTRACT
Many interesting large-scale systems are distributed systemsof
multiple communicating components. Such systemscan be very
hard to debug, especially when they exhibit poor performance.
The problem becomesmuch harderwhen systemsare composed
of “black-box” components: software from many different (per-
haps competing) vendors, usually without source code available.
Typical solutions-provider employees arenot alwaysskilled or ex-
perienced enough to debug these systems efficiently. Our goal is
to design tools thatenable modestly-skilled programmers(and ex-
perts,too) to isolateperformancebottlenecks in distributedsystems
composedof black-box nodes.

We approachthis problemby obtaining message-level tracesof
systemactivity, aspassively aspossibleandwithoutany knowledge
of node internals or messagesemantics. We have developed two
very different algorithms for inferring the dominant causal paths
through a distributed system from thesetraces. One uses tim-
ing information from RPC messagesto infer inter-call causality;
the other uses signal-processingtechniques. Our algorithms can
ascribe delay to specific nodes on specific causal paths. Unlike
previous approachesto similar problems, our approach requires no
modificationsto applications,middleware,or messages.

Categoriesand Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—distrib-
uteddebugging, testing tools

GeneralTerms
Algorithms, Performance,Measurement

Keywords
Performance debugging, black box systems, distributed systems,
performanceanalysis
�
Theorderof author namesis random.

Permission to make digital or hard copiesof all or part of this work for
personal or classroom useis granted without fee provided that copiesare
not madeor distributedfor profit or commercialadvantage andthat copies
bear this noticeand thefull citationon thefirst page. To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permission and/or a fee.
SOSP'03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTI ON
Many commercially-important systems, especially Web-based

applications, arecomposed of a numberof communicating com-
ponents. These are often structuredas distributed systems, with
components running on different processors or in different pro-
cesses. Forexample, amulti-tieredsystemmightstartwith requests
fromWebclientsthat flow throughaWeb-serverfront-endandthen
to a Web “applicationserver,” which in turn makescalls to a data-
baseserver, and perhapsadditional services (authentication,name
service, credit-card authorization,customer relationship manage-
ment, etc.).

Such systems can be very hard to debug, especially whenthey
exhibit poor performance. Distributed systemsarealready hardto
debug,but theproblem becomesmuch harderwhenthey are com-
posedof “black-box” components: softwarefrom many different
(perhaps competing) vendors, usually without source code avail -
able.

Enterprisesoftenbuy complex systemsascomplete,customized
packages from a “solutions vendor.” Solutions vendorsmust de-
liver complex component-based systemswithout the expense of
highly-skilled, experiencedprogrammers.While modestly-skil led
programmerscan designand construct such systems,theymaylack
the expertise to solve performance problemsefficiently. Vendors
of individual components provide training and support for solv-
ing performance problemswithin the components, but not neces-
sarily among multi-vendor components. Therefore,whole-system
performance debuggingcan requireeither aninordinateamount of
time, or theservicesof expensiveandhard-to-find systemsintegra-
tion experts. Both problemscut into profits for solutionsvendors.

We contend that performance-oriented operating systemsre-
searchmust focuson performance-in-the-large, ratherthanmerely
delivering incremental improvementsfor low-level component per-
formance. Complex systemsexhibit performanceproblemsthat of-
tengrow out of the systemcomplexity, and while thesecansome-
times be solved by improving the performance (or selection) of
low-level components, they cannot be diagnosedby focusing on
thecomponents.

Our goal is to design tools that help programmers isolate per-
formancebottlenecksin black-boxdistributed systems. Thesetools
should not require much (or any) direct support from thecompon-
ents themselves,becausewe do not want to assumethat software
vendorswil l make any effort to support a particular methodology.
Thetoolswill not themselves solveany performanceproblems, but
by isolating problemsefficiently and (we hope) accurately, they
should increase the efficiency both of modestly-skil led program-
mersand of expertsat systemsintegration.

2

In this paper, we describe a specific approach to this goal,
based� on application-independent passive tracing of communica-
tion betweenthenodes in adistributed system,combined with off-
line analysis of these traces. We show that traces gathered with
little or no knowledgeof application design or messagesemantics
aresufficient to make useful attributions of the sources of system
latency. Ourinsistenceonpassivetracingwithnoapplicationmodi-
fication makes our approach applicable to almostany distributed
system, and differentiates our work from other approaches that
either require application or middleware modifications, or make
stronger assumptionsaboutapplications or messages.

2. PROBLEM STATEMENT, GOALS, AND
NON-GOALS

We model a distributed systemas a graph of communicating
nodes. Nodes might be computers, in which case the edges are
the network connections between communicating pairs of nodes.
(Our approach handlesothernodegranularities,aswe will discuss
in Section 6.) An external request to the system causesactivities
in the graph alonga causal path: a seriesof nodetraversals where
each traversal is caused by somemessagefrom aprior nodeon the
path. (Spontaneoussystemoperations can also generateactivities
on causal paths.)

server
database

application
server

application
server

authentication
server

server
database

server
database

server
database

web serverweb serverweb server web server web server

clientclient client client client clientclient

Figure1: Examplemulti-ti er application showing a causalpath

Figure 1 shows an exampleof a typical distributed system(a
multi-tier Web application), with onepossible causal path superim-
posedasa thick line. (The thinner arrows show potential one-hop
message paths.) Note that this path flows several times through
most of the nodesit touches, since this application is RPC-based
and bothcalls and returnscausenodeoperations.

Weassume thatall latenciesin such a systemcanbeascribedto
the nodetraversals. (In a system with significant network delays,
wecanmodel each long-delay network connectionasapair of zero-
delay connectionsandavirtual delay node. Our initial target envir-
onmentsare LAN-basedsystems,where network propagation and
switchingdelaysarenormally negligible.)

Note that the samenode may impose different delays for dif-
ferent traversals. For example,the“authentication server” node in
Figure 1 is traversedtwice in the path shown: once between its
invocationand its call to the database, and oncebetween thedata-
base's response and its own response to theWeb server. Because
these are, most probably, different code paths, they could easily
havedifferent latencies.

While the examplein Figure1 is an RPC-style system,our ap-
proach also coversmessage-basedsystems, in whichmessagesmay
flow arbitrarily from node to node, without explicit call-returnse-
mantics. For example, viewed at the level of an email message,

theInternet mail systemis message-based, not RPC-style.Simple
distance-vector routing protocols arealso message-based.

Theaim of our project is to create tools and methodologies that
enableprogrammersto understandthe sources of latency in a dis-
tributedsystem. In the context of our model, we want thesetools
to:
� find the high-impact causal path patterns—the repeatedly

executed causal paths that account for a significant fraction
of the system's latency asobserved by its users. Theseare
thepatterns that areexecutedfrequentlyandwith high mean
latency relative to any other frequently-executed patterns.� identify those nodeson high-impact patternsthat, asparti-
cipants on these patterns,addsignificant latency to thepat-
terns. For example, an authentication server that caches its
results might be used by several nodes in a Web applica-
tion, but mightonly causehigh latency wheninvoked froma
login-server node, andnot wheninvoked from deeper in the
application.

To illustrate theimportance of the secondpoint, we use anana-
logy: a flat procedure profiler can tell you that a function is con-
suming lotsof time, but only ahierarchical profiler (e.g.,gprof[9])
can tell you that the problemis not that the function is slow, but
that it is being called from a place that doesn't need to call it so
often. Thecontext in which acomponent is usedmay beof critical
importancein diagnosis.

Therequirements above define what makesthe tools useful. We
alsoimposesome requirements to make the tools broadly applic-
able to systemsof black-box components. Our toolsshould:
� require minimal knowledge (on the part of the tool or the

user) of thesemanticsof theapplication,the implementation
of nodes, thesemanticsof messages,or a priori information
about communication paths.� require no modificationsto applications, middleware, mes-
sages, or workloads.� not significantly perturb systemperformance.

Webelieve that atool that requiresapplication-specificknowledge,
or applicationmodifications, is much less likely to be used. We
especially wish to avoid the need to deploy new infrastructureor
promulgate new standardsbefore our tools could be useful. We
would like to approximatetheideal of a tool that takesno effort to
use. Therefore,onemeta-goal for our researchis to test how close
wecan get to thezero-knowledgeideal.

Wealso havesomenon-goals:
� Wearenotdevelopingtools to replacetheneedfor program-

mers. Performancediagnosisishard,andour goal isto make
it easier for humans, not to automate it.� Our toolsarenot meant to verify correct systembehavior, or
diagnosethecausesof faulty behavior.� Our tools arenot aimed at characterizing or benchmarking
system performance.� Because our tools areaimedat the debugging phase, we do
not require real-time results; we are will ing to use offline
analysis(as with aprocedureprofiler).

2.1 Hypotheses
Weareattempting to validatetwo hypotheses:

1. Our black-box approach issufficient to identify high-latency
causal pathpatternswith useful precision, andto ascribe the
sources of such latency to specific nodes in the context of
specific patterns.

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 3

2. Giventhat our black-box approach doesidentify thesources
of latency, this informationis useful to aprogrammer who is
debuggingtheperformanceof adistributedsystem.

The first hypothesis can be evaluated using traditional metrics of
computersystemevaluation. The second hypothesis, however, is
anassertionabout whathumansfind useful in carrying out amessy,
intellectually challengingtask. In thispaper, weconcentrateon the
first hypothesis, andleave thevalidity of thesecond to thereader's
intuition.

3. RELATED WORK
Beforedescribingour approach, we review severalcategories of

related work.

3.1 Similar approachesto similar problems
Severalresearchprojects haveattackedtheproblemof perform-

ance debugging in distributed systems,but have taken less radical
approachesto theproblem of black-box components. In particular,
they all requireeitherahomogeneous implementationenvironment
or moreintrusive instrumentation. Noneof thesesystemsrely on
passivemessagetracing.

Hrischuk et al. [11] obtain causal tracesof distributedcompu-
tations, including various resourcedemands(not just latency), by
labelling eachend-to-end activity using an object-orientedproto-
typinglanguage(Mlog). Al thoughthisdidnotrequiremodification
of the prototypeapplication, their approach is not applicable out-
sidethis prototyping system,andin particular would not be useful
for systemsbuilt from legacy components.

Probably the work closest to ours is Magpie[13], which is also
aimedat performanceanalysisof distributed systems.Magpie, too,
treats componentsasblack boxes. However, Magpie specifically
associatestracedmessageswith incomingrequests, by “taggingin-
coming requestswith a uniqueidentifier and associating resource
usagethroughout the system with that identifier.” This implies a
moresophisticatedtracing infrastructurethan in our approach,but
perhaps less need for complex post-processing. Magpie alsocon-
centrates morethanwedo on detecting relatively rareanomalies.

A much earlier project, the Distributed ProgramsMonitor
(DPM) [18], also reportspathsof causality through distributedsys-
tems.It useskernel instrumentationto trackthecausal information
betweenpairsof messages,ratherthantryingto infer causality from
messagetimestamps. DPM reportsan edgebetween apairof nodes
if any causal pathincludesthat edge. Therefore, theexistence of a
path in theresulting graph does not necessarily meanthat any real
causal path followedall of thoseedgesin thatsequence.

3.1.1 Commercial products
Several companies already sell software to isolateperformance

problemsusingcausal tracing. For good commercial reasons, these
productsaim at a robustsolution for a narrow version of theprob-
lem weareaddressing; our approach is bothbroader and riskier.

Theproducts thatweareawareof concentratemostly on instru-
menting Javaapplications,since this is acommercially viablemar-
ket and becausethe Java Virtual Machine(JVM) provides a con-
venient locus for non-intrusive instrumentation. (Some systems
focuson .Net instead of Java.) They usually also instrumentone
or more popular non-JavaHTTP servers, of necessity, but lack the
abili ty to deal with abroader rangeof “ legacy” nodes.

For example,AppAssure[1] can automatically createcompon-
ent dependency models, using “adapters” that poll components
through existing APIs and by instrumentingJ2EE method calls.
PerformaSure[23] reconstructs executionpaths by tagging end-to-
end activities(usertransactions)asthey flow throughaJ2EE-based

system.OptiBench [22] collects traces by instrumenting J2EEand
Java interfaces, and apparentlycan providefine-grainedtiming for
steps on causal paths. OptiBench alsosupportstransaction replay,
providing problemre-creationto aid in debugging.

3.2 Diff erent approachesto similar problems
Tierney et al. [26] describe NetLogger, a systemfor real-time

diagnosis of performance problems in distributedsystems. Their
approach requiresprogrammersto add event logging to carefully-
chosen pointsin the application, and generates“lif elines” that cor-
respond to our causal paths. NetLogger provides tools for man-
aging andvisualizing logs,but thetoolsappearunableto aggregate
information from many executionsof thesamecausal path.

Hellerstein et al. [10] described ETE, an approach for measur-
ing both end-to-end responsetimes and the contributing compon-
ent latencies. Their approach requires programmers to instrument
applications to revealsignificant events andto describe interesting
transactionsahead of time, so it is not ablack-boxtechnique.

3.3 Similar approachesto diff erent problems
Chenet al. [5, 6] describe Pinpoint, a systemfor locating the

components in a distributed system most likely to be the cause
of a fault. Pinpoint differs from our work in that they focus on
faults rather thanperformanceproblems. Their approach involves
collecting end-to-endtracesof client requests travelling through a
distributed systemby taggingJ2EEcalls with arequest-ID; this re-
quiresnodirect application modification,but iscurrently limitedto
single-machinetracing. They then use data-mining techniques to
correlatelow-level faultswith high-level problems.

Brown et al. [3] also describe a technique aimed at problem
(fault) determination based on characterizing dynamicdependen-
ciesbetweencomponents. However, rather thanusingtraces(as in
Pinpoint), they perturb system components (for example, by tem-
poraril y locking adatabasetabletoprevent acomponent frommak-
ing progress). Bagchi et al. [2] describe a similar approach based
on fault injection. Note that the resulting pair-wise dependencies
arelessspecificthanend-to-end causal pathswouldbe, andtheper-
turbation approach,which isdefinitely notpassive,requiresconsid-
erableknowledgeof thesystem design.

In Section 5.2 we describe an algorithm for discovering caus-
ality from traces based on statistical correlation. Zhang and Pax-
son [27] also use statistical techniques, correlating traffic to de-
tect intruders who subvert hostsfor use as“stepping stones” (i.e.,
intruders who telnet into a host and then out of it, intending to
cover their tracks). Huang et al. useanalysisof passively-obtained
network traces to detect performance problems in wide-area net-
works [12]. However, they are interestedin network-scale phe-
nomena(delay or congestion)rather thancausality.

4. OVERVIEW OF OUR APPROACH
How might a tool that understands nothingabout the semantics

or implementation of the individual components locate perform-
ance problems in a distributed system? Our approach relies on
tracing the messagesbetweenthenodes, andusingone of several
offline algorithmsto infer causality fromthesetraces. In particular,
our algorithms infer multi-hop causal path patterns, and provide
statistics about latency, both of each patternand of each nodetra-
versal asit occurs in aparticularpattern.

The upper part of Figure2 givesan example of one activation
of a simple system. NodeA is the “client” that initiatesa causal
path, whichconsistsof threeRPCs(A calls B, B calls C, thencalls
D, then returnsto A). The path includes eleven steps: six RPC
messages(odd-numbered arrows) andfiveintra-nodedelays(even-

4

4

7 (call)
10

1 (call)

11 (return)

3 (call)

11

5 (return)

9 (return)
8

2
6

A B

C

D

3 51 B - 2 C - 4 B - 6 7 D - 8 9 B - 10

Figure2: Example causalpath in detail

numberedarrows). The lower part of thefigureisanabstraction of
the causal pathshowing that theeleven steps arecausally related.
Sinceourmessage tracesincludeonly thesix odd-numberedsteps,
our task is to infer theeven-numberedstepsand thecausal connec-
tions. Wealso want to know latenciesfor theeven-numbered steps,
which would allow us to report that the latency of thecausal path
is dominated, for example, by step 6 (internal to node B). A key
featureof our approach is that wecan separately report thedelays
of steps2, 6, and10 in thisexample.

This task is difficult because a real trace contains interleaved
messages from many separatecausal paths. Also, a user of our
tool wantsto seeastatisticalsummaryfor each of themost import-
ant causal pathpatternsin thesystem, not a list of every causalpath
seenin the trace.

Our approach involves threephases:

1. Exposing and tracing communication: In this online
phase,wegatheracompletetraceof all inter-nodemessages
for an operational system, under real or synthetic load. De-
pending on the meansof communication, we might obtain
a single global trace, or a set of per-edge traces for each
pair of communicating nodes. This phase createsseveral lo-
gistical problems, including how we obtain individual mes-
sages without perturbing the system, how we convert the
messages to a concise trace, and how we manageand store
largeamountsof tracedata. Section 6 discusses this phase.

2. Inferring causal paths and patterns: In this offline phase,
wepost-processa traceusing oneof severalalgorithms. The
algorithmsmust cope with tracesthat are potentially quite
largeandnoisy (e.g.,with missingentries, extraneous calls,
timeouts and retries,unsynchronizedclocks, etc.). Al though
this phase need not meet real-time performance goals, our
algorithmsmust be reasonably efficient in time and space.
However, the algorithms need not be fool-proof, because
our tools are meant to help humans debug systems, not for
automaticcontrol. They should be robust enough that they
seldom fail with false negatives (i.e., failing to detect the
most important causal pathpatterns)or falsepositives (over-
whelming theuser with extraneous information). Section 5
describesour algorithms.

3. Visualization: A full systemshouldalsoprovideappropriate
ways to visualize the results. However, our researchso far
hasonly partially addressedthis issue.

An abstract traceformatformstheconnection betweenthefirst and
second phases,which allows us to useseveral different techniques
to gather traces,andseveral different offline algorithms. Thetrace
contains,at a minimum, a (timestamp, sender, receiver) tuple for
each message,but might includesomeadditional information.Be-
causetheinformationweneeddependson which algorithm is used,
we will describe the algorithms before describing the specifics of
gathering traces.

5. ALGORITHMS
Our key technical, asopposedto logistical, challenge is to infer

causal path patternsand latenciesfrom relatively simple message
traces. Wehavedevelopedtwo distinctlydifferent algorithms. One
dependson theuse of RPC-stylecommunication, and operates on
individual messages in the trace. Theother is able to handle free-
form message-based communication, and uses signal-processing
techniques to extract causal information fromtraces.

5.1 The “n esting algorithm”
The first algorithm combines all of the per-edge traces into a

single global trace and explicitly examinesthe individual trace
entries to inferhow calls are“nested.” That is, if nodeA callsnode
B and thenB callsC beforereturningto A, theB-to-C call is nested
within the A-to-B call. We call this the “nesting algorithm.” It is
roughly linear (in timeand space) in thesizeof thetrace. However,
it requiresRPC-stylecommunication (in which the messages are
calls and returns) to make its inferences.

node A

tim
e

node C node Dnode B

1 (call)

2
3 (call)

45 (return)

6

7 (call)

89 (return)

1011 (return)

Figure3: Timelines for exampleof Figure 2

Figure 3 il lustratesthe nesting property for the example causal
path from Figure 2. This figure shows the causal connections
betweenthe timelinesfor each of thefour nodes. In this example,
thecall from B to C (messages3 and 5) is nested in thecall from
A to B (messages1 and 11). Thealgorithm infersnesting relation-
ships by examining the timestampsof themessagesin the trace.

While any given pair of calls might appear to be nested purely
by accident, if thesamenesting relationship appears repeatedly in
a lengthy trace then we can infer with high probability that the
nesting represents a causal relationship between these calls. The
processing latencies in nodes B, C, andD may be calculated dir-
ectly fromthemessagetimestamps. Webuild multi-nodecall paths
based onapparentcausal relationships, then apply simplestatistical
methodsto infer which pathsareboth non-accidental and signific-
ant contributorsto overall system latency.

5.1.1 Details of thenestingalgorithm
A call pair is a tuple describing a single call from one nodeto

anotherandits matching return. It contains the timestampsof the
two messagesand thenamesof the nodes. The nestingalgorithm
consists of four steps:

1. Find call pairs in thetrace.
2. Find all possiblenestings of onecall pair in another, and es-

timatethe likelihoodof each candidatenesting.
3. Pick the most likely candidate for the causing call for each

call pair.
4. Derivecall pathsfromthecausal relationships.

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 5

We first il lustratethe algorithm using the example in Figure 3.
Step(1) groups trace entries1 and11—the call ���	� and the
return �
��� —intocall pair (�
�������������); entries3and5 intocall
pair (�������������); andentries7and 9 into call pair(������������). (For
easeof explanation, in this example we usethemessage numbers
asthetimestampvalues.)

Step (2) examines each call pair to determinethesetof calls that
might have caused it. Here, (���������!���) and (���"�#�"�$��) bothoc-
cur betweenthebeginningandendof (�%�������&�����). (�
�����������&�) is
the only call that encloses(�������������) and (�����'���$��). In a more
complex example,acall pair might benested within severaldiffer-
ent “parent”calls, whichwouldhave to beranked by likelihood.

Step (3) chooses themost likely parent call for each call pair in
the traceasits causalparent, based on aggregateinformationfrom
all other call pairs between the samenodes. Step (4) again exam-
ineseachcall pairandcreatesacall pathstartingfrom eachcall pair
thatwasnot nested in any othercall pair. Since(�(�"���������&�) is the
parent for two call pairs,it creates thepath �)�*�+�*�(,�� . The
call pairs(�����������"�) and (������������) do not initiatepaths because
they arenestedin (�(�������������).

We store all pathpatternsin a table. If a new pathmatches a
pathpatternalready in thetable,thentheexisting pattern isupdated
with the latenciesfor thenew path.Otherwise,anew pathpatternis
initializedwith thepath's latencies. At theend of thealgorithm, the
path patternscan be sorted by their frequency andall path patterns
can bedisplayedwith average latenciesor latency distributionsfor
each node.

Figure4 shows pseudo-codefor thefour steps of the nesting al-
gorithm, whichwenow explain in moredetail.

5.1.1.1 Identifyingcall pairs.
This part of thealgorithm (procedureFindCallPairs in Figure4)

matches call and return traceentries into call pairs using a hash
table -/.10�2135476�898;: which is indexed by (sender, receiver, callid)
tuples. Call identifiers are based on packet header information
and are used only to match calls with returns; they need not be
end-to-end request identifiersasused in Magpieor Pinpoint. Mes-
sagesthat do not have a matching call or return messageare dis-
cardedduring thisstep; noisein thetrace—extraneousand dropped
messages—doesnot impact therest of thealgorithm.

When call identifiers are not provided or are not unique (for
example, when RPC packets are retransmitted), the entries for a
given (sender, receiver, callid) are sorted by timestamp. If mul-
tiple calls occur from �<�=� beforeany returnsfrom ���>�
theneach returnis matchedwith theearliest unmatchedcall. This
heuristic works when no call path progresses faster than its pre-
decessors, but fails otherwise. For example, given the correct
call pairs (�
�����@?"�BA) and (�%������CD��E), if ?GF�C but A
HIE then
the algorithm will incorrectly createthe call pairs (�(������?���E) and
(�%������CD�7A). More importantly, this heuristic cannot handle ex-
traneous or droppedmessages. However, we believe that we can
find usablecall identifiers in messageheaders in most cases,andso
wehave ignoredtheproblemso far.

This step also identifies all possible parentsfor each call pair.
At the time the return message of the call pair (���"�) is pro-
cessed, we find all call pairs (J%���) in - .K0�2735476�898;: with an earlier
call timestamp. (�����) is nested insideall of them.

5.1.1.2 Scoringpotentially-causal nestings.
A call pair (��������CL�@E) might be nestedin many (�(������?��7A)

call pairs, but it is only directly caused by onesuch parent. The
ScoreNestings procedureestimatesthe likelihood thateachnesting
relationshipis really acausalrelationship.Wedothisusing ascore-
board that recordstheprevalence, in theentire trace, of thedelays

1. procedureFindCallPairs
2. for each traceentry (M7N , CALL/RET, sender O , receiver P , callid QSR)
3. caseCALL:
4. store (M N ,CALL, O ,P ,QSR) in T .S0�2S3&4B6�898;:
5. caseRETURN:
6. findmatching entry(MSU , CALL, P , O , QSR) in T .K0�2735476�898;:
7. i f matchis found then
8. remove entry from T .K0�213!476�898;:
9. update entry with returnmessagetimestampMVU
10. add entry to T 476�898 0�6XWZY�:
11. entry.parents [\^] all callpairs(MS_ , CALL, ` , O , QSRaU)
12. in T .K0�2735476�898;: with M _cb M Ued
13. procedureScoreNestings
14. for each child (P%f@ghf7MKU&fSMS_) in T 4S6�898 0�6XWZY�:
15. for each parent(O�fSP(fSMBNifBMSj) in child.parents
16. scoreboard[O�fSP(fBgkfSM Ukl M N] m^\on1p�q&r child.parentsr s
17. procedureFindNestedPairs
18. for each child (P%f@ghf7MKU&fSMS_) in call pairs
19. maxscore [\ 0
20. for each p (Otf7P%fBM N f7M j) in child.parents
21. penalty = /* seeSection 5.1.1.3*/
22. score[p] [\ scoreboard[OtfBPcf@ghfBM1U l MBN] u penalty
23. i f (score[p] v maxscore) then
24. maxscore := score[p]
25. parent := p
26. parent.children [\ parent.children w
] child d
27. procedureFindCallPaths
28. initializehashtable T 0�6XxSy�:
29. for each callpair (Otf7P%fBM N f7M U)
30. i f callpair.parents \Gz then
31. root [\ new pathstarting at O
32. root.edges [\{] CreatePathNode(callpair, M N) d
33. i f root is in T 0�6XxSy�: then update its latencies
34. elseaddroot to T 0�6XxSy�:
35. function CreatePathNode(callpair (Otf7P%fBMSN�fSMSj), M;0)
36. node [\ new nodewith nameP
37. node.latency [\'MSj l MSN
38. node.calldelay [\|MBN l M 0
39. for each child in callpair.children
40. node.edges [\ node.edges w
] CreatePathNode(child, MSN) d
41. return node

Figure4: Pseudo-codefor the nesting algorithm

betweenthetwo call messagesin apotentially-causal nesting.
The scoreboard represents the set of all nesting-delay tuples

(�
�����"�}�@~&�iE��1�), where ~&��EB��� is the time difference between the
call from � to � and the subsequent call from � to � ; eachtuple
has an associatedvalue. The scoreboard entries for a given nest-
ing thus form a histogramof these delay values. However, each
increment to a histogramcount is weightedby thenumberof pos-
sible parentcalls: if thereare � possible parentcalls for a given
child call, thenthescoreboard valuefor eachof these � tuplesis
incrementedby �a��� .

Weactually storeeachhistogram asa set of exponentially-sized
bins, efficiently representing the large range of delay values that
might appear in real traces. We find that 340 bins (indexing the
histogram by �V��� NX� ��� ~&�aES�S�) gives reasonably accurateresults for
intervalsbetween1 msec. and 2 hours. Thenumber of histograms
is equal to thenumber of (�%�������) triplessuch that acall �
�I�
is nestedin a call ���=� at least once. This number, which is
independent of trace length,is at most � _ , for � nodes; in practice
it shouldbesignificantly lower.

Af terscoringall of thecall pairs,weoptionally smooth thehisto-
gramsby convolving them with aGaussiannormal curve. Smooth-

6

ing helps accuracy when thereis skew in themessage timestamps,
assho� wn in Section 7.5.6;it has li ttleeffect in traceswithoutskew.

node A node B node C

t2
t3

t1

t4

Figure5: Example of parallel calls

Figure5 shows an examplein which two �)�*� calls areeach
nestedin two ����� calls,creating four possiblesetsof parent-
child pairings. However, the “medium-length” delay (�K�%���B� and
�S�����S�) occurstwice as oftenas the“long” delay (�S����� �) or the
“short” delay (� � ���1�). Thus, the histogramfor (�(�������) hasa
peak at themedium-lengthdelay.

5.1.1.3 Choosinguniqueparents.
The FindNestedPairs procedure choosesthe most likely causal

parent for eachcall pair. The inferencethat any given nestingis
a causal relationship is based on the scoreboard generated in the
previous step, combined with simpleheuristics about theparent's
calls to other possible children. For each call pair (��������� � ��� �)
in the trace, we consider each possible parent (�(�������7�a��� �) and
generatea score for the relationship. The raw score is simply the
valueof �S�
�����"�}�"� � ���1�a� in thescoreboard.Theraw scoreis then
scaledusing threepenalties:

 Overlapping-child penalty: Wecount thenumberof children¡�¢7£e¤7¥�¦9§7¨ alreadyassignedto thegivenparent that overlapin
time with the current call pair, and multiply the score by¡�¢7£e¤7¥�¦9§7¨�©«ª . Same-child penalty: Wecount thenumber of children ¡�¬B§�­�¤
already assignedto thegivenparentthat have thesamedes-
tination as the currentcall pair, and multiply the score by¡ ¬B§�­t¤i©�® . Generic-childpenalty: Wecountthenumberof children ¡e§X¯ ®
already assignedto thegiven parent, and multiply thescore
by ¡e§X¯ ® ©«° .

Theparameters ± , ² , and ³ areconfigurable. In our experiments,
we get the most predictable, near-optimalperformance acrossall
workloads with ±µ´·¶ and ²^¸+³{¸º¹ . However, there are indi-
vidual workloadsfor whichdifferent valuesperform better.

In Figure 5, each ����� child call hastwo possible �»�	�
parents, but each child hasone parent for which the scoreboard
includes a peak at the medium-length delay(� � ��� � and � � ��� �).
Based on this inference, FindNestedPairs assigns each �¼�½�
child call pair to one of the �<�¾� parent call pairs, as shown
with thesolid and dashedlinesin thefigure. Theoverlapping-child
penalty encouragesFindNestedPairs to assign the two children to
different parents. Tie scoreswhenconsideringparents for a given
child arebrokenby assigning thechild to theearliest tied parent.

5.1.1.4 Creating andaggregating call paths.
Thefinal step, FindCallPaths, coalescesthecausal relationships

found in step(3) into call paths, and keepsaggregatelatency stat-

istics for each pathpattern. We usehash table ¿ ¨�§�ÀSÁ�¬ to find path
patternsquickly.

The latency of a node is the total time spent in processing at
thatnode, including at any nodesthat it calls. The call delayof a
nodeis computedasthetime between thecall to its parent and the
inferredcausally-related call to this node.

5.1.2 Timeand spacecomplexity
Finding call pairs is linear in both timeandspace in the sizeof

the trace: each trace entry is examinedonceand put into one call
pair. Finding nestedcall pairs is linear in both timeand spacein the
total numberof nestingrelationships. Thisnumber is theproduct of
thenumberof traceentriesand themean per-nodeparallelism dur-
ing thetrace. Wedefineper-nodeparallelism astheaveragenumber
of candidate parents for eachchild (seeSection 5.1.1.3).Creating
and aggregating call paths is linear in thenumber of messagesin
thetrace: each message either beginsanew call pathor belongsto
exactly oneexisting call path.Overall, thealgorithmis linear in the
numberof messagestimesthemeanper-nodeparallelism.

5.2 The “convolution algorithm”
Unlike the nesting algorithm, our secondalgorithm findscausal

relationships by considering theaggregationof multiplemessages,
rather than by examining messages individually. The algorithm
separates a whole-systemtrace into a set of per-edgetraces,and
treatseach of the per-edgetracesasa timesignal. Thecentralidea
of thealgorithm is to convert tracesinto timesignalsand then use
signal processingtechniquesto find thecrosscorrelationsbetween
signals. It considersthetraceof messagesfrom A to B separately
from the traceof messagesfrom B to A, so this algorithm can be
usedontracesof free-formmessage-basedcommunication,not just
RPC-styletraces.

Theresultsof thisalgorithm aredirectedgraphs, in which anode
might appear several times(e.g., ���Â�Ã�Ä�»�Â�). To avoid
confusionbetween thegraphof thedistributedsystemitself andthe
output graph, weusetheterm vertex for thegraphverticesand node
for thecomponentsof thesystem.

Figure 6 summarizes the algorithm using pseudo-code. Given
a root node Å and a messagetrace ¿ , thealgorithm first creates a
vertex ±�Æ in theoutputgraph. Thenit considers the messages with
source Å : for eachdifferent destination node Ç in those messages,
thereis acausalrelationship between Å and Ç , so thealgorithm cre-
atesavertex ±�È andaddsanedgefrom ± Æ to ±$È .

Thealgorithmthencontinuesthepath from Ç by calling Process-
Node. Procedure ProcessNode calls FindCausedMessages to find
thesets of messageswith source Ç thatappearto becausedby the
messagesfrom Å to Ç . Each setcontains messages with a single
destination node É and a common delay Ê : theset indicatesthata
messagefrom Ç to É wassent exactly Ê timeunitsafter a message
from Å to Ç . For each set, it addsa vertex ±«Ë with label É and edge
�S± È ��± Ë � with label Ê to thegraph, andrecursively continuesalong
thepath from É (i.e., it creates thegraph in depth-first order).

Function FindCausedMessages is theheart of the algorithm. It
computesthe causal delays Ê , which are time shifts between the
messagesarriving at Ç and the messages leaving Ç . To find these
timeshifts, it converts themessages Ì from Å to Ç into anindicator
function Ía�i�B�B� . This function is definedto be

Ía�i�B�7�Î¸ 1 if Ì hasamessagein timeinterval Ï �L�^Ð��"�LÑ^Ð�Ò
0 otherwise

where Ð is asmall fixed constantand Ï �D�{Ð����«Ñ^Ð"Ò is ashort closed
interval. It similarly convertsall messagessent from node Ç into
anindicatorfunction Í � �B�7� . It then computesthe crosscorrelation
�(�B�7� of Í����B�7� and Í � �B�B� . �(�B�S� is defined to be the convolution

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 7

1. procedureFindPathsFromRoot ÓSÔBÕ
2. ÖØ×hÙ Ú traceof messageswith source Ô
3. output graph Ù Ú graph with onevertex Û�× labeledi
4. for each destination node Ü in Ö × do
5. Ý)Ù Ú messagesin ÖØ× with destination Ü
6. add vertex Û�Þ labeled Ü andedge ÓSÛ ×�ß Û�ÞeÕ
7. to output graph
8. ProcessNodeÓKÜ ß Û�Þ ß Ý(Õ
9. procedureProcessNodeÓKÜ ß Û Þ ß Ý
Õ
10. ÖàÞ%Ù9Ú traceof messageswith source Ü
11. áãâ ß�ä�ä�äDß átå)Ù9Ú FindCausedMessagesÓBÝ ß Ö Þ Õ
12. for æGÙ Ú)ç to è do
13. é'Ù Úêáìë .node; íÂÙ9Úêá�ë .messages
14. îïÙ Úêá ë .delay
15. addvertex Û«ð labeledé and edge ÓSÛ Þ ß ÛØð�Õ

labeled Ó�ñ íºñ ß î!Õ to output graph
16. ProcessNodeÓSé ß Û ð$ß íòÕ
17. function FindCausedMessagesÓBÝ ß"ó Õ
18. è�Ù9Úoô
19. õ
Ù Ú FindCorrelation ÓBÝ ß�ó Õ
20. find positions of spikes of õ(ÓBöBÕ
21. for each spikeposition î found do
22. ó�÷ Ù9Ú messagesin ó with a timestampequal

to sometimestampin Ý shifted by î�ø�ù
23. for each destination node é in óì÷ do
24. è<Ù Úúèüû�ç
25. á å .node Ù9Úoé ; á å .delay Ù Úêî
26. á å .messages Ù9Ú messages to é in ót÷
27. return á â ß átý ß�ä�ä�ä«ß á å
28. function FindCorrelationÓBÝ ß"ó Õ
29. þ�â}Ù Ú indicatorfunction for Ý
30. þ ý Ù Ú indicatorfunction for ó
31. return crosscorrelation ÓSþ�ý ß þ â Õ

Figure6: Pseudo-codefor the convolution algorithm

of þ ý and the time inverse of þ â 1, which is why we call this the
“convolution algorithm.” Roughly speaking, õ(ÓBö7Õ hasa spike at
position î if and only if þ�ý�ÓBöBÕ containsacopy of þ â ÓBöBÕ time-shifted
by î . Figure7 shows the convolution for an example þ â ÓBöBÕ and
þ�ý�ÓBöBÕ .

To detect thespikes, if any, in õ(ÓBö7Õ , we compute themeanand
standarddeviations of õ . We consider a point to bea “spike” if it
is a local maximum ÿ standarddeviationsabove themean,where
the parameter ÿ is a small number (e.g.,4). Theremay be many
such local maximaclosetogether. Rather than consider eachoneto
beaseparatespike, we requireat leastonepoint thatis less than �
standarddeviationsabove themeanbetween spikes, where ����ÿ
is another small number (e.g.,3). Among thecandidate points for
agivenspike, wechoose thelargest to represent thespike.

5.2.1 Discretization of theindicator function
Thedefinitionfor þ â ÓBöSÕ assumesthat ö isacontinuoustimepara-

meter. In practice,weneedto discretize time. To do so, wechoose

1The convolution of two functions �DÓBöSÕ and �«ÓSö7Õ is another func-
tion, denoted �����«ÓSöBÕ , defined by ���	�«ÓBöBÕ(Ú�

�
�� � �LÓ��ØÕ��«ÓBö��
�ØÕ7î�� . The discrete version of this definition is Ó������àÕ7×òÚ� ���Þ�� � � � Þ ��× � Þ .

60
70
80
90

100
110
120
130
140
150

-10000 -5000 0 5000 10000

Figure 7: Example of convolution output, showing two spikeswith
bold lines. The x-axis representsthe time shift; the y-axis roughly es-
timates the number of messagesmatching a given shift.

a timequantum � andthentreat ö asanintegermultiple of � . The
definition of þaâiÓBö7Õ is then modified asfollows:

þ â ÓBö7ÕÎÚ squareroot of numberof messagesin Ý during
time interval � ö�� ß ÓBö«ûoçaÕ��/Õ , where ö is aninteger.

Severaldiscretizationsarepossiblebut theabovedefinition pro-
ducesthemost accurateresultsandis whatwe implemented. Note
that þ â ÓBö1Õ can be represented by an array. When thereare time
quantawith lots of messages, if þ â ÓBöBÕïÚ�Û and þ ý ÓSö û
î!Õ�Ú Û
thenthe (discrete) convolution of þ ý ÓBö7Õ and þ�â�Ó �ãöSÕ at position î
includesan Û ý term.Thesquareroot in thedefinition compensates
for thissquare.Wesimilarly change thedefinition of þ�ý�ÓBö7Õ .
5.2.2 Dealing with delayvariances

The algorithm described so far performs best when the node
delays have little variance. For example, for each message from!

to " , " sendsanother messageto õ after the samefixeddelay.
Whenthe variance is significant, we can get better results by in-
creasingtheparameterù in line22 of thealgorithm, to allow delay
variationsof that magnitude.

5.2.3 Dealing with undesirablepaths
Further improvements to the convolution algorithm remove

“noise” (low-frequency paths), suppress thedetection of accident-
ally short pathsand of cycles, and suppress edges with negative
apparent delay. Spacelimitationspreventusfrom describing them
here.

5.2.4 Otherimprovements
Our implementation of the convolution algorithm includesnu-

merousother featuresto improveaccuracy. For lackof spacewedo
not describetheseimprovements,but themeasurementswepresent
in Section 7 reflect their effects.

5.2.5 Timeand spacecomplexity
The convolution algorithm must store the è messages in the

trace,andthevectorscontaining discretized indicatorfunctions. At
any time, thereis a constant numberof such vectors. The sizeof
eachvector is boundedby �GÚoÖ$#%� , whereÖ is thedurationof the
longesttraceand � is the time quantum.Hence, the overall space
complexity is á(ÓSè·û�� Õ .

Thetimecomplexity of thealgorithm is proportional to thetime
to traverse the trace and the time to computeconvolutions of dis-
cretizedindicatorfunctions. Convolutions of vectorsof size � can
becomputedin time á(Ó��'&)(%*+�hÕ usingfast fourier transforms.The
numberof timesthe trace is traversed and a convolution is com-
puted is proportional to thenumber , of edgesin the output graph

8

-
. Hence, the overall time complexity is .0/�13254�176'8)9%:+6<; . In

practice= , wefind thatthesecondfactor, 176'8>9�:+6 , tendstodominate
thefirst.

5.3 Comparison of the two algorithms
Our twoalgorithmshavedifferent strengthsandweaknesses. Of-

ten these strengthsarecomplementary: sometimesone algorithm
worksbetter, sometimes theother. Herewecontrast thealgorithms
in termsof their utility.

5.3.1 RPCvs. free-formmessages
The nesting algorithm explicitly works only with systems that

useRPC-stylecommunication.Theconvolution algorithmcan find
causal relationships in any form of message-based system. The
limited applicability of thenestingalgorithm is not without bene-
fits, though: because it “knows” that a system is RPC-based, it
providesamoreconciserepresentation of such systemsthan could
theconvolution algorithm.

Somecommonformsof RPC-basedsystemsposeaproblem for
thenesting algorithm aswehaveimplementedit, andcurrently can
only be analyzed with theconvolution algorithm. If a systemfor-
wards RPCcallsor returnsasymmetrically (e.g., ? calls @ , @ for-
wards the call to A , and A replies directly to ?) then we fail to
detect this as a single RPCcall. Also, if a callednode repliesto a
call before issuingacausally-relatedsubsequent call, thereisnoob-
viousnesting relationship betweenthetwo calls. (Thiscanhappen,
for example, when an intermediate nodeusesdelayed write-back
caching.) Webelievethatthenesting algorithmcanbeexpandedto
deal with thesecases, but doingso is futurework.

On the other hand, the convolution algorithm hassome draw-
backs with RPC-style path patterns. Given a path pattern ?CB
@5BDAEBF@5BG? , thealgorithm will not only report this path,
but also ?HBI@JBF? . This is becausethere is a causal relation
between ?5BK@ and @JBF? . If a node appearsmany timeson
a path, the algorithm will report a large number of derived paths
that arenot very interesting. We believe it is possible to automat-
ically filter out such paths,while preserving legitimatepaths, by
using frequency counts; this is futurework. Thenesting algorithm
correctly findstheright numberof instancesof each pattern, aswe
show in Section 7.5.2.

5.3.2 Rare events
Theconvolution algorithm looks for spikes in thecross correla-

tion of two signals. Therefore, it cannot beused to searchfor rare
events, especially thosewith high delayvariance.

The nesting algorithm explicitly analyzes every RPC message
for its relationship with other messages,andthereforecan find rare
events. However, distinguishing therareeventsof interest fromthe
morefrequent but uninteresting eventsis still anunsolvedproblem.
Also, thescoreboard mechanism describedin Section5.1currently
biasesthealgorithmawayfrom rareevents: they will befoundmost
easily when therearefew overlapping callsamongthesamenodes.

5.3.3 Detail requiredin traces
Our tools would ideally require no informationabout message

formats. In practice, this goal meansthat the algorithms should
use only information available from widely deployed standards
with self-describing formats. The convolution algorithm effect-
ively meets this ideal; it requiresonly timestampsand senderand
receiver identifiers.

The nesting algorithm further requires that trace entries be
marked as either RPC calls or returns. (In a few cases, this in-
formation canbeinferredbasedon a priori knowledgeof address

formats, such as UDP's “well-known” port numbers.) The al-
gorithm alsoperforms much betterif the trace systemcan extract
call identifiersfromtheRPCmessages.

5.3.4 Timeand spacecomplexity
As discussed in Section 5.1.2,thenesting algorithm runs in time

and spacelinearin thenumber of tracedmessagestimestheamount
of parallelism in the trace. Generally, the trace length (in mes-
sages)dominates. Aswewil l show in Section7.6,practical running
times are quite low—much lower than the duration of the traces
themselves—and the spaceoverhead is morelikely to bethelimit-
ing factor.

The convolution algorithm, as discussed in Section 5.2.5, has
space complexity linear in thelength of thetrace(measured either
by messagecount or totalnumber of timequanta, whichever is lar-
ger), with a modest constant factor. Running time is thedominant
cost for theconvolutionalgorithm; asweshow in Section7.6,it can
be much slower thanthenestingalgorithm. In practice, thereis a
tradeoff betweenincreasedprecision of thedelayresults(decreasedL) and longer runningtime.

5.3.5 Visualization
The two algorithmsprovide different visualizations, even when

applied to thesametrace. For RPC-basedsystems, thenesting al-
gorithm providesa morecompact output, becausetheconvolution
algorithm doesnot combinecallsandreturnsinto onegraph edge.

5.4 Visualization of results
Thevisualizationswe show in this paperareratherprimitive, in

the form of graphs produced by the “dot” program[8]. We use
similar but not identical formatsfor theoutput of both thenesting
and convolution algorithms.

Root
Mean latency for entire path pattern

B
Mean latency in B and all children

Total count
Total latency

C
Mean latency in C

Mean latency between
entry to B and entry to C

D
Mean latency in D

Mean latency between
entry to B and entry to D

Figure8: Output format for nesting algorithm

The output of thenesting algorithm, as depicted in Figure8, is
a graph showing theprocedurecall hierarchy for a specific causal
path pattern.The total numberof instances for thepattern,and the
total latency for this pattern, areshown next to thefirst edge in the
graph. A node's ellipse includes itsnameand themeanlatency for
all activity in thenode andits children. An arrow representing the
direction of a call is labeledwith themean latency between entry
into theparent nodeand entry into thechild node.

Thenesting algorithm actually computes thefull distribution for
each latency, rather than just the mean. We show only the mean
in our “dot” visualizations, to avoid cluttering theoutput. Wehave
starteddevelopingan interactive visualization tool thatprovidesa
richerdisplay, including delay distributions. This tool alsoallows
theuser to sort pathsby frequency or total latency, and highlights
theindividual nodesthat contributethemost latency.

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 9

Root B C

B->C count
delay_1, ..., delay_n

B

C->B count
delay_1, ..., delay_n

D

B->D count
delay_1, ..., delay_n

B

D->B count
delay_1, ..., delay_n

Root

B->A count
delay_1, ..., delay_n

Figure9: Output format for convolution algorit hm

With the representation of Figure8, internal delaysas shown in
Figure2 may becalculatedfromthenodeand edge labels.Our in-
teractivetool simultaneously displaysboth thetree-structured view
of apathand a timelineview, which makes the internal delays ex-
plicit andclearly showstheparallelism betweencalls.

The nesting algorithm inherently generatestrees whenever a
node calls morethan onechild. The convolution algorithm views
every path asa linear sequence of nodes, sometimes with multiple
visits to a node. Figure 9 shows the output format for the con-
volution algorithm given the sameRPC-stylesystem depicted in
Figure8. Eachdirectededge is labeledwith asetof delays, repres-
enting thetime(s)thatthepreceding nodespendsbeforesending a
message to the next node (i.e., theshift(s) found for thespike(s)).
The delaysare orderedby declining frequency. Each edge is also
labeled with the total countof messages with thosedelays.

6. OBTAINI NG TRACES
Our approach depends on tracing all (or nearly all) of themes-

sagesbetweennodes in the distributedsystem. This requirement
leads to numerous challenges. This section describes the tech-
niqueswearedevelopingto obtain traces;wediscussspecific trace
sets in Section 7.1.

6.1 Generalconcerns
Our black-box assumptions simplify the tracing problem, be-

cause we need relatively little information about each message.
The convolution algorithm needs just the timestamp, sender, and
receiver. The nesting algorithm also needs to know whether mes-
sagesarecalls or returns, and can benefit from call identifier in-
formation (e.g., from RPCheaders), which improves theaccuracy
of call-pair matching. Therefore, we need not parse the messages
too deeply into theprotocol stack.

We might need ratherlargetrace setsto analyze certain distrib-
utedsystems. Themessage ratemight be quite high and the trace
durationnecessaryfor revealing interestingcall pathpatternsmight
be long. While handling large tracesets createslogistical chal-
lenges, the problem remains feasiblebecause large tracesstress
aspects of computer systemsthat scale well: local area network
bandwidth,and storagebandwidthand capacity.

While asuitabletrace collection andanalysissystem might rep-
resent asignificant capital cost above that of thesystem under test,
we intend thishardwarefor useduring debugging. It isappropriate
to invest in debugging equipment that can be re-used for various
systemsunderdevelopment, especially if this investmentincreases
programmer productivity.

The term “black box” can be applied with more or less rigor,
depending on thegranularity of the nodes of interest andon how
hard it is to extract theminimalmessageinformation that weneed.
For example, the developersof the systemslisted in Section 3.1
use “black box” to mean“application-codegeneric.” We aspire to
a morerigorous black-box ideal,a tool that requiresabsolutely no
support from thenodesof thesystem,requiresnomessage-specific
knowledgebeyond widely-deployed standards, anddoes not per-
turb system performanceatall.

Passive network tracing can approximatethis ideal, but cannot
always expose the nodes at the appropriate levels of granularity.
If the nodes of interest are, for example, processes or J2EE ob-

jects,we must obtaintraces more intrusively. Non-passive tracing
compromisesour zero-knowledge,zero-instrumentation, andzero-
perturbationgoals,but if thecostscanbeminimized thenour tools
arestill useful. Our approach also hastheadvantage,over systems
(such as in Section 3.1) requiring infrastructural changes, that we
can mergetraces from both passive monitoring and moreintrusive
monitoring to get a unified view of a complex systembuilt from
“legacy” components.

We aredeveloping techniquesto obtain traces at various layers
of asystem, and withvaryinglevelsof intrusiveness. Theseinclude
passive network monitoring, middleware instrumentation, kernel
instrumentation, and (in certaincases)application instrumentation.
Wedescribeour specific approaches in thefollowing sections.

6.2 Passive network tracing
Whenthenodescommunicatevia anetwork, wecanobtainmes-

sagetraces through passive network tracing (or “packet sniffing”).
Passive tracing, at least in principle, does not perturb the system
under test, andrequiresno softwarechanges to the system. This
enablesits usein risk-averse production environmentsandon leg-
acy systems.Passive tracing is thereforeour preferred mode.

However, while we have successfully collected and analyzed
passive traces, none of the experiments reported in this paper are
based on passive traces, so (given space constraints) we will only
briefly discuss the issuesassociatedwith passive tracing.

A packet tracerequiressomeprocessing tobeuseful for our ana-
lysis tools.Problemsincludeidentifying nodesbased on addresses
at variousprotocol levels; finding message boundarieswhen mes-
sagesspanpacketsor start in themiddleof packets; andidentifying
calls and returns,andextracting call identifiers for RPCprotocols.
Thesearenot novel challenges; many researchers and commercial
productshavedoneelaborateanalysisbasedrecoveringor inferring
high-level informationfromraw packet traces[7, 21].

6.2.1 Mechanicsof passivetracing
With olderbroadcast-bus LANs, it was easy to passively capture

all packets from one monitoring point. Modern switched LANs
make theproblem harder. Wesee two possibleapproaches:

Port mirroring , which is supported by many switch vendors, al-
lows a switch to be configuredto copy (“mirror”) someor
all packets to a dedicated monitoring port. It allows us to
treat applicationhosts entirely asblack boxes(we need not
install any softwareon those hosts) and should not perturb
thesystem under test.

Packet sniffing at each parti cipant host applies when the hosts
support programssuch astcpdump[14]. After tracecapture,
thetracesaremergedin post-processing(seeSection 6.5).

High packet ratescan overload asniffing systemor its incoming
link, because we cannot flow-control the messages to avoid this.
Thescalabili ty of ourapproach dependssomewhat on this issue, al-
thoughouralgorithmstoleratesomepacket loss(seeSection7.5.5).

Researchers at the University of Waikatoand Endace Techno-
logy [17] haveachieved acapturerateof close to 20M packets/sec.
using a commoditydual-CPUserver and special-purposenetwork
capture cards. We experimented with a relatively small server
(AlphaServer DS10, 618MHz, Tru64 UNIX V5.1A) runningtcp-

10

dump, and found that it could captureslightly over 25,000 packets
per seM cond (albeit with somelosses).

6.3 Tracing in a J2EE system
Many moderndistributed systemsarebuilt on J2EE [25], using

Enterprise Java Beans (EJBs) to represent components. Members
of the Pinpoint project (seeSection 3.3) have tools to trace inter-
EJB calls and returns, andthey graciously sharedtheir code with
us. Their tracing system [16] tagsall messages on acall pathwith
a singleend-to-endrequest-ID, but we can ignorethe end-to-end
information, to testouralgorithmsasif weonly had simplertraces.

J2EE-level tracing imposes runtime costs and perturbs system
performance. The Pinpoint tools are not optimized for our pur-
poses, and might never becheapenoughto run full-time in a pro-
duction environment. However, our tools are meant for perform-
ance debugging, not system management, so tracing neednot be
enabledfull -time. A system owner can enable tracingonly during
a debugging phase, exactly the time when the owner is will ing to
pay the price of some extra short-termoverhead in the interest of
solving along-term problem.

6.4 Application-level tracing
Our black-box approach does not normally involve modifying

applications to generatemessage tracesdirectly, but wearenot too
proudtousesuch traceswhen available. Someapplicationsalready
generate,in normaloperation,sufficient tracingor logging inform-
ation for our purposes(perhapswith somepost-processing).

6.5 Merging traces
We might need to merge traces collected at different points in

the distributedsystem(e.g., packet sniffers at multiple hosts) or at
different layers (e.g.,both packet sniffing and J2EEtracing).

We simplify the trace-merging process by adopting a uniform
representationfor traces, for example:

timestamp operation sender rcvr ID
1047680084.482205 CALL SENT nodeA nodeBid37
1047680084.483575 RET SENT nodeB nodeAid37

Wethenmergetheindividual traceentriesin timestamporder. Both
algorithms described in Section5 canhandle minor clock skews,
although synchronized clocks improve our accuracy. Mill s [20]
has shown thatthewidely-deployed NTPprotocol can synchronize
clocks on thesameLAN with anRMS error of under1 msec., and
over the global Internet “usually less than 5 ms.” This accuracy
is usually more thansufficient, becausetracetimestamp resolution
seldomis as low as 1 msec.

This leaves several problems, such as duplicate entries (e.g.,
from sniffing packetsat bothends of a link) and node-namingin-
consistenciesbetweentracesmadeat different levels. We have de-
veloped techniquestosolveseveralsuch problems, but wehavenot
yet testedthem adequately.

7. EXPERIMENTS AND RESULTS
In this section, we describeseveral experimentsthat show how

our tools might be used in practice. We also describe experiments
to validatetheaccuracy of our tools.

7.1 Tracesets
We would like to test our tools on traces from a heavil y-used

“real-world” application,suchasamulti-tierWeb server. However,
access to such systems is tightly controlled, and we have not yet
succeededin obtainingthenecessary traces.

Therefore,in order to debug and testour algorithmsandtrace-
collection techniques, we have obtained several traces of varying

degreesof realism. Herewe describe the tracesetsand how they
wereobtained;subsequent sectionsdescribewhatwe learnedfrom
each traceset.

Notethat these traceswerenot collected usingpurely black-box
techniques. Rather, we have chosen traces that can demonstrate
theaccuracy of our algorithms: by starting with “whitebox” traces
and thenconverting them to a “black box” form (i.e., by remov-
ing information) we are able to explicitly evaluate how well the
algorithmswork (seeSection 7.5).

7.1.1 Tracegenerator
In order to test our algorithmson specific cases, includingtrace

scenarios we expect to be challenging, we wrote “maketrace,” a
tracelet-based trace generator. A tracelet is a template for an
ordered sequenceof messages between nodes,with parameterized
Gaussian delaybetweenmessages. A tracelet can represent a spe-
cific causal path pattern through a distributedsystem; it can also
representan explicit interleaving of severalcausal paths, if wewant
to test how well our algorithmsdisentanglesuchan interleaving.

Maketrace takesaconfigurationfile thatspecifies a set of trace-
lets, and for each tracelet a parameterized uniformly random
delay betweensequentialinvocations(representing aclient's“think
time”) . The configurationalso specifies how many instances of
eachtraceletsequencerun in parallel. Maketracethusdirectly con-
structsarbitrarily long tracesby instantiating tracelets, ratherthan
by generating tracesasaside-effect of simulating adistributedsys-
tem.

7.1.2 J2EE traces
OurJ2EEtraces consist of inter-EJBcalls in thePetStorev.1.3.1

example application [24], running on a single-node JBossv.3.0.6
server [15], on a2-CPU1GHzPentium II I with Linux 2.4.9.A load
generatorran on the same host, emulating 24 clientswith several
workload profilesandameaninter-request think timeof 7 seconds.

Weobtainedtwo traces,each about threehourslong and includ-
ing about1.3million messages. (Each inter-component call results
in two messages.) In onetrial, weartificially increased thedelayin
one leaf component, and were ableto find theaddeddelayeasily
using bothof our algorithms. However, for mostof theexperiments
reportedin thissection, weuseda2000-second prefix of eachtrace;
this avoidsexcessive run times for the convolution algorithm (see
Section 7.6).

7.1.3 Received-header trace
While searchingfor a large, real-world application that is not

primarily RPC-based, we realized that email transit service is
ideally suited to testing the convolution algorithm. Because most
email messagespassthrough severalservers,andalmost all servers
add “Received” headers (with source, destination, andtimestamp)
to eachmessage,we canextract theseReceived headersandtreat
themindividually as entriesin a trace of inter-nodemessagetrans-
missions.

(Weemphasizethat thisisnot thebest way touseReceivedhead-
ersfor causal-pathanalysisof anemail system.By treatingtheRe-
ceived headersof a givenmessage as separatetraceentries, rather
thandirectly extractingthepaththemessagehad followed,onecre-
atesan unnecessarily hard problem. However, this problemis ex-
actly theonethat theconvolutionalgorithm is meant to solve,so it
is agood test of our approach.)

One of the authors logged all of his incoming message head-
ersfor thisexperiment. Hegetslotsof email (partly becausehehas
severalemail addressesthatresolveto thesamemailbox,andlotsof
spamtargetsmore thanoneof these addresses). Over two months,

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 11

hereceived 11,683email messagesincluding a total of 81,044us-
able ReN ceived headers. A small number of Receivedheaderswere
excludedbecauseof unparseable timestamps,or becausethey were
from generic hostnames, such as “localhost” or “unknown,” that
wouldhavecreated falseconnectionsbetweenmany paths. Wealso
excludedall forwardinghopsoutsidethecorporateemail system,to
avoid anexplosionin thenumber of paths.

7.1.4 Other traces
In addition to the traces described above, we have applied our

algorithmsto severalother tracesfromrealsystems. Theseinclude
onegathered from a distributedfile system,and another from in-
strumentedinter-method communicationin an embedded system.
We wereable to find the correct causal pathsin thesetraces. We
do not describethesefurther, both for spaceconsiderations and be-
causetheresults do not illustrate any novel issuesother thanthose
revealedby the tracesdescribed above.

7.2 Results: Tracelet-basedmulti -tier traces

server
database

application
server

application
server

authentication
server

server
database

client

web server web server
WS2

DB1

AUTHAP2AP1

DB2

WS1

Figure10: Mul ti-tier configuration (simplifi ed versionof Figure1)

Weused maketraceto generateavarietyof traces simulating the
multi-tier configurationshown in Figure 10. Someof thesetraces
haveanadditional 200 msec. delay inserted at nodeWS2, between
the serial calls to AUTH and to eitherAP1or AP2, so thatwe can
test if our algorithms correctlymeasure such delays. We refer to
theseasadded-delaytraces.

To test the nesting algorithm, we generatednormal and added-
delay traces including about 200,000 messages each. Figure 11
showstheresultsfor thenormalcase,with themostfrequentcausal
path patternsranked left to right in order of decliningtotal latency.
While this figure is too dense to depict the particularsof any spe-
cific pattern,it shows how a load-balancingconfiguration, such as
in Figure 10, can generatean exponential increase in the set of
paths. In effect, there areonly a few abstract pathsin this figure,
and a good visualization tool (futurework) would clustertogether
isomorphic graphswith similar countsanddelays.

Wethenranthenestingalgorithmontheadded-delaytrace. Fig-
ure12 shows the “normal” and “added-delay” outputfor onespe-
cific causal pathpattern that includes the WS2 node. Onecan eas-
ily infer from the delays on the graph edges (especially the edge
between WS2 and AP1) that thereis approximately 200 msec. of
addeddelay in Figure12(b),albeit slightly underestimatedby the
algorithm.

We analyzed the same traces with the convolution algorithm
(OQPERTS>U). Figure13 shows the results,for thesame causal path
pattern as in Figure 12. This algorithm generates long pathsfor
RPC-stylecall patterns,becauseit looksat thecall and returnmes-
sagesindependently, rather than as unified RPCs. However, it is

client
0.227

ws2
0.227

Total:
129 sec.

568x

auth
0.070

0.021

ap1
0.120

0.097

db2
0.050

0.010

db2
0.050

0.020

(a)Normal trace

client
0.414

ws2
0.414

Total:
151 sec.

364x

auth
0.069

0.022

ap1
0.120

0.281

db2
0.049

0.010

db2
0.050

0.020

(b) Added-delaytrace

Figure12: Multi-ti er results fr om the nestingalgorith m

quite good at assigning theblameto thecorrectnode(marked on
theedgebetweenWS2and AP1, in bold),andat correctly measur-
ing theextradelay.

7.3 Results: J2EE traces
We ran two traces of the PetStore system: one with no added

delay, theotherwith a constant 50 msec. delay added in each call
of the/mylist.jsp node.

root
0.045

/petstore/category.screen?category_id=FISH
0.045

Total:
5.591 sec.

125x

com.sun.j2ee.blueprints.waf.view.template.TemplateServlet
0.041

0.002

JspServlet
0.037

0.003

/template.jsp
0.036

0.001

JspServlet
0.008

0.003

JspServlet
0.005

0.012

JspServlet
0.006

0.018

JspServlet
0.005

0.025

JspServlet
0.003

0.031

/banner.jsp
0.007

0.001

/sidebar.jsp
0.004

0.000

/category.jsp
0.005

0.001

/mylist.jsp
0.003

0.001

/footer.jsp
0.002

0.001

Figure14: PetStore results, normal configuration (nesting algorith m)

Figure 14 shows one frequently-invoked causal path pattern
found by the nesting algorithm, although not the most frequent
one. (The convolution algorithm produces similar results.) Fig-
ure15 shows thesamepathwhenexcessdelay is insertedin node
/mylist.jsp, shown in gray. Onecan clearly seethe excess, when
comparingthisdiagramto Figure14, notonly at theslow node, but
alsoin its parentsand in thetotalsfor theentire path. (The excess
appears to be slightly larger than the nominal50 msec. delay ad-
ded; thismight beanartifact of Linux's10msecclock granularity.)

7.4 Results: Received-headertrace
We ran the convolution algorithm for the Received-header

(email-header) trace. With a quantum of 30 sec., the algorithm
reports all delays aszero, implying real delaysbetween zero and

12

client

ws2

ap2

db1

client

ws1

ap2

db2

client

ws1

ap1

db1

client

ws1

ap1

db2

client

ws1

ap2

db1

client

ws2

ap2

db2

client

ws2

ap1

db2

client

ws2

ap1

db1

client

ws2

client

ws1

client

ws2

auth ap1

db2 db2

client

ws1

auth ap1

db2 db1

client

ws1

auth ap2

db2 db2

client

ws1

auth ap1

db2 db2

client

ws2

auth ap1

db2 db1

client

ws1

auth ap2

db2 db1

client

ws2

auth ap2

db2 db2

client

ws2

auth ap2

db2 db1

client

ws1

ap1

db2

db1

client

ws1

ap1

db1

db2

client

ws1

ap2

db2

db1

client

ws2

ap1

db2

db1

client

ws2

ap1

db1

db2

client

ws2

ap2

db1

db2

client

ws1

ap2

db1

db2

client

ws2

ap2

db2

db1

client

ws2

auth

db2

client

ws1

auth

db2

client

ws1

auth ap2

db2 db1

db2

client

ws2

auth ap1

db2 db2

db1

client

ws2

auth ap2

db2 db1

db2

client

ws2

auth ap2

db2 db2

db1

client

ws1

auth ap1

db2 db1

db2

client

ws1

auth ap2

db2 db2

db1

client

ws2

auth ap1

db2 db1

db2

client

ws1

auth ap1

db2 db2

db1

client

ws1

ap1

client

ws1

ap2

Figure11: Expandedmulti-ti er results fr om thenestingalgorith m (you arenot expected to beable to read this)

client ws2 auth

1247
0.02

db2

1239
0.01

auth

1183
0.05

ws2

1166
0.01

ap1

694
0.01

db2

412
0.02

ap1

358
0.05

ws2

327
0.05

client

327
0.01

(a)Normal trace

client ws2 auth

1006
0.02

db2

1001
0.01

auth

968
0.05

ws2

956
0.01

ap1

567
0.21

db2

349
0.02

ap1

302
0.05

ws2

275
0.05

client

275
0.01

(b) Added-delaytrace

Figure13: Multi-tier results fr om convolution algorit hm

root
0.096

/petstore/category.screen?category_id=FISH
0.096

Total:
22 sec.
224x

com.sun.j2ee.blueprints.waf.view.template.TemplateServlet
0.094

0.001

JspServlet
0.091

0.002

/template.jsp
0.090

0.000

JspServlet
0.006

0.003

JspServlet
0.004

0.009

JspServlet
0.003

0.014

JspServlet
0.069

0.017

JspServlet
0.003

0.087

/banner.jsp
0.005

0.000

/sidebar.jsp
0.003

0.000

/category.jsp
0.003

0.000

/mylist.jsp
0.068

0.000

/footer.jsp
0.002

0.000

Figure15: PetStoreresults,constant-delayconfig. (nestingalgorith m)

29 secs. As thequantum is decreased to 5 sec., the algorithm re-
portssomesecondary spikesabovezerosecs.; Figure16 shows the
most frequent paths from this trial. Node “names” in this figure
arearbitrary integers.Note thattheprimary spikeson all pathsare
at zero,becausemost of the time messagesareforwarded imme-
diately. However, somepaths show secondary spikesat 10 or 15
seconds. We verified from the original trace that these spikes are
accurate.

7.5 Results: Validation of accuracy
So far we have discussed our results primarily in qualitative

terms. Hereweattempt to quantify theaccuracy of ouralgorithms.

7.5.1 Metrics for evaluating accuracy
To evaluatetheaccuracy of our algorithms, wedeveloped aset of

simplemetricsthat quantify thediscrepanciesbetweenthe“ground
truth” of a trace(the actual call paths traversed during the trace)
and thecall pathsinferredby oneof our algorithms.Thesediscrep-
anciesareeither falsenegatives(thealgorithm failedto find apath)
or falsepositives(thealgorithm inferred apaththatwasn't there).

Wecancomputefalsepositiveor negativeratiosbasedoncounts
of path patterns, path instances, or messages. For example,if the
actual systemexecutedthepath VXWZY[WC\]WC^ twice, but the

60 37 38

738
0, 10

41

299+295
0

60 37 40

489
0, 15

41

478
0

60 39 38

766
0

41

315+311
0

60 39 40

460
0

41

439
0

60 67 38

768
0, 10

41

318+317
0

60 67 40

523
0, 10

41

512
0

Summededge-counts represent the combination of paths for accidentall y
duplicatedmessagedeliveriesdue to a mail server configuration error at
node38.

Figure16: Received-header traceresults (convolution algorith m)

algorithm found oneinstanceof V_W`Y[WC\]W`^ , oneinstance
of V_WZY , and one instanceof \XWZ^ , then:

a Counting pathpatterns, thealgorithm had no falsenegatives
andtwo falsepositives.a Countingpath instances,thealgorithmhadonefalsenegative
andtwo falsepositives.a Counting messages, the algorithm failed to ascribe 3 of 6
messagesto the correct path (falsepositives b falsenegat-
ives, in this case).

Of course, to compute theseratios we need a representation of
theground truth. Fortunately, thenesting algorithm is able to pro-
duceguaranteedcorrect paths if we“cheat” and tageach tracemes-
sagewithapath-instance-ID value.Wecan do thisfor our synthetic
traces(fromMaketrace) and our PetStore traces,so wecan run the
algorithm once with path-IDs andonce without, andcomparethe
results. We canalsoextract exact paths from the Received-header
trace,usingMessage-ID email headers,andcomparethosepathsto
theoutputof theconvolution algorithm. Wecannot, unfortunately,
evaluatefalse positive or negative ratios for other kinds of traces
(e.g.,thoseobtained by packet sniffing).

Our algorithmstendto fail by generating a largevariety of false
positive pathpatternswith low instancecounts,among aset of ac-
curatepatternswith highcounts.Recall that our primary goal is to
identify themost frequently executed pathsin the distributedsys-

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 13

tem, so a useful tool wil l rank-order the inferred path patterns by
countc andthenpruneaway mostof thelow-frequency pathpatterns.
Therefore, weexaminewhetherthetop d patternsthatremainafter
pruningmatch thetop d ground-truthpatterns,or whether pruning
causes someof thosetop d ground-truth patterns to be omitted.
For agivenalgorithmandtrace,wecanplot thenumberof omitted
ground-truthpatternsasa function of d .

0

20

40

60

80

100

0 5 10 15 20 25 30 35

F
al

se
 n

eg
at

iv
e

ra
te

e

Top N required to match

1/N 2/N 3/N 4/N

0% tolerance
2% tolerance

Figure17: Falsenegativepath pattern rate vs. pattern pruning

Figure 17 plots the results for the nesting algorithm over a
maketrace-generated trace for the multi-tier configuration. (This
trace included 202,498 messageswith a mean parallelism of 42.)
The false-negative rate in the figure is bounded in most casesbyfhg d , indicating thatmost false negativesarethe result of near-ties
in the ranking. (Our belief that these are really near-ties is con-
firmedby the pointsplottedfor “2% tolerance,” where we ignored
falsenegatives whoseinstancecount waswithin 2% of makingthe
top d . At 6% tolerance, almostall falsenegativesdisappear.) Sev-
eral true false positives(at ranks27 and 28) causeadditional false
negatives for high valuesof d , by displacing true positives. We
ran the sametests for simpler synthetictracesandfound no false
negatives except in thecaseof a few near ties.

Weran similarexperimentsfor theconvolution algorithm. It also
foundthetop d paths,with similar errors in thecaseof ties.

Our goals also include accuratemeasurement of path-specific
latencies internal to nodes. Accuratepath inferencesareobviously
a prerequisite, so we have placed more emphasis on quantifying
path inference accuracy. However, we have found that even with
relatively high error ratesin inferring paths, the latencies we find
for correctly-inferred pathsarewithin a few percent of the correct
values.

7.5.2 Testing using pathological cases
Certain special combinations of causal pathscan causeour al-

gorithmsto makefalse inferences, especially whenmany pathsare
being executedin parallel. We devised a number of pathological
cases, depictedin Figure 18, on which we could test theaccuracy
of our algorithms:

Children-parallel has i calling j twice in parallel. This breaks
all three of the nesting algorithm's child-penalty heuristics.
In most situations, it is our worst case, but it becomes oneof
our best caseswhen delaydeviations arelow, or when call
parallelism is high.

Children-0/2 has node i calling node j twice in seriesin one
pattern, while theother pattern has no calls to j . This wasa
hardcase for a simplerversion of the nesting algorithm that
lackedascoreboard, and so could not assignboth j calls to
thesamepattern.

Children-d/cc has node i calling node j twice in series in one

pattern, and i calling k once in the other. This is a hard
case for the nesting algorithm, especially with high paral-
lelism,because thechild-penalty heuristics wrongly leadthe
algorithmto assumethat i is calling j and k in series.

Penalty-breaker includes two paths with multiple calls to the
samechild, and one with no such call. Also, the delays on
the two longer pathsareidentical, causing lots of confused
assignments. This breakstwo of three child-penalty heurist-
ics, andinspired thethird one. It demonstratesthe tradeoffs
required whenselectingdefault valuesfor thethreepenalties.

We use these test cases, as well as synthetic multi-tier traces,
in thenext few experiments evaluating theaccuracy of the nesting
algorithm.

7.5.3 Testing theeffects of parallelism
As parallel activity increases in a trace, the nesting algorithm

has a harder time correctly assigningcalls to paths. The result is
an increase in thenumber of false-positive path instances inferred
(which can push true pathsout of the top d). We ran a series
of experimentswith increasing parallelism to seehow this affects
thefalse-positive rate; Figure19 shows theresults. The l axis in
this figure is a dependent variable, roughly linear with theaverage
amountof parallelismused by thetracegenerator.

0
10
20
30
40
50
60
70
80
90

100 1000 10000

F
al

se
 p

os
iti

ve
 r

at
e

m

Messages per second

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure19: Effect of tr aceparallelism on nesting algorithm accuracy

Generally thealgorithm's performance is moderatelyworsened
by increasing parallelism.Theeffect on themulti-tier caseis some-
what more pronounced. For the Children-parallel case, increasing
parallelismactually improvesperformance, perhapsbecausetheal-
gorithm has more opportunity to infer that the child calls are in
parallel.

7.5.4 Testing theeffects of delay variation
Maketrace generatesrandom delays at each node in a call, us-

ing a Gaussian distribution. Wecanvary the standard deviation of
thesedistributionsto seehow increasingdelayvariationaffectsthe
false-positive rate for path instances; Figure 20 shows the results
for thenesting algorithm. Generally, performanceworsenswith in-
creasingvariation. The Children-parallelandChildren-d/cccases
areespecially vulnerable to variation. Note that in a real system,
one would not expect all of the nodedelaysto have thesamevari-
ance.

7.5.5 Testing theeffects of message loss
We expect our tools to beused with traces collected by passive

network sniffing, which is oftenlossy. Wecan quantify theeffects
of message losson theaccuracy on our algorithms, by comparing
theresultsof an algorithm onaloss-freetraceandonasimilar trace
with randomly deletedmessages.

14

a
0.150

b
0.150

Total:
287 sec.
1919x

c
0.070

0.050

c
0.070

0.070

(a)Children-parallel

a
0.050

b
0.050

Total:
156 sec.
3120x

a
0.170

b
0.170

Total:
303 sec.
1781x

c
0.050

0.050

c
0.050

0.110

(b) Children-0/2

a
0.110

b
0.110

Total:
171 sec.
1559x

d
0.050

0.050

a
0.170

b
0.170

Total:
222 sec.
1310x

c
0.050

0.050

c
0.050

0.110

(c) Children-d/cc

a
0.050

b
0.050

Total:
179 sec.
3575x

a
0.170

b
0.170

Total:
304 sec.
1786x

d
0.050

0.050

d
0.050

0.110

a
0.170

b
0.170

Total:
303 sec.
1780x

c
0.050

0.050

c
0.050

0.110

(d) Penalty-breaker

Figure18: Causalpath pattern combinations for pathological cases

0
10
20
30
40
50
60
70
80
90

0 0.2 0.4 0.6 0.8 1

F
al

se
 p

os
iti

ve
 r

at
e

n

Relative standard deviation

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure20: Effect of delayvariation on nesting algorith m accuracy

The maketrace generator allows us to model the bursty losses
typical of network sniffing. The programmodels a sniffer with
a peak capture rate and a finite queue, and discards packets that
would overflow thisqueue.

0
10
20
30
40
50
60
70
80
90

100

0.1 1 10 100

F
al

se
 n

eg
at

iv
e

ra
te

o

Drop percentage

Children-parallel
Children-d/cc
Penalty-breaker
Multi-tier
Children-0/2

Figure21: Effect of messagedrop rate on nestingalgorith m accuracy

Wetested the effect of messagedropson theperformanceof the
nesting algorithm,using severalsynthetic traces. Figure 21 shows
theresultsof numeroustrials. Performanceisexpressed asthefrac-
tion of falsenegativepath instances. Wefixed themaximumqueue
length at 64 packets, and increased the peakcapture rate in each
trial until the drop ratereached zero. The necessary capture rates
ranged from115 to 605packets/sec. (Notethat themessageratesin
our simulationsarearbitraryand relatively low.) Each point in the
figure corresponds to a specific capture rate; thus, both the false-
negative rateand thedrop ratearedependentvariables.

The results show that for low drop rates(below about 1%), al-
gorithm performance is unaffected. For higher rates, but below

about10%,performanceis reducedbut notunacceptable.At higher
droprates, it is notsurprisingthattheresultsarebad.A real tracing
system,therefore,must be sufficient to capturemostpackets,but
neednot beperfect.

7.5.6 Testing theeffects of clockskew
To testtheeffectsof clock skew on traces collected atmorethan

one point in thenetwork, we wrotea simpleprogram, “skewer,” to
add per-nodeclock skew to an existing trace. We canthen perturb
an unskewed trace by varying amounts to test how our tools cope
with skew. (Skewer is alsouseful to de-skew a real-world trace;
we use additional information, such asthatobtained from NTP, to
remove themeanper-nodeskews fromamulti-point trace.)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

F
al

se
 n

eg
at

iv
e

ra
te

, f
n

p

Skew, msec

No comp
Comp
Comp + smooth
Rev, comp + smooth

Figure22: Effect of clock skewon nesting algorit hm accuracy

The nesting algorithm includestwo featuresfor compensating
for skew. First, it supports a configurable skew window tolerance,
which loosens comparisons between timestampswhere they are
usedtoestablishnesting relationships. Second, it allowssmoothing
of each scoreboard entry, which widenspeaks to make the parent-
selection step moretolerant. Figure22 shows the multi-tier trace
with varying skew addedat the WS2node (i.e., WS2's clock runs
0 to 60 msec. fast), and a fix skew window of 30 msec. The
“no comp” curve shows inaccuracy (false-negative rate) without
skew compensation. The“comp” curveshowsinaccuracy withonly
the skew window enabled; this actually decreasesaccuracy. The
“comp+smooth” curve shows the combination of skew windows
and smoothing, which performsbest for most reasonable levelsof
skew. The“rev, comp+smooth” curveshowswhathappensif WS2's
clock insteadrunsslow, rather than fast, by thevalueon thex-axis.
The vertical marksindicate50 msec. and10 msec.; thesearethe
mean call and returndelays, respectively, in the trace. The nest-
ing algorithmresultsin few falsenegativeswhen skewsaresmaller
thanthesumof theskew window (i.e.,one'sestimateof worst-case

In Proceedings of 19th ACM Symposium on Operating SystemsPrinciples, BoltonLanding,New York, October, 2003 15

skew) andtheactualdelays,but performsbadly for larger skews.

7.5.7 Accuracyof theconvolution algorithm
We ran trials of the convolution algorithm on the Received-

header trace, varying the time quantum (q) from 5 secs. to 720
secs. We comparedthe output to a ground-truth graph extracted
directly from theemail messages. Over all of the timequanta we
tried, the false-positive rate varied between 21% and 29%, with
only minor dependence on the quantum(setting q_r[s7t%u yielded
the worst results). However, if we ignorepathsthat are reported
with fewer than100messages, thefalse-positiveratedropsto zero,
except for qXvxw7yzu . (Note that such large q values are useless,
in any case, for finding non-zero delays in this trace.) In no case
did thealgorithmmissany frequentrealpaths in this trace(i.e., the
false-negativerate for frequent pathsis zero).

7.6 Results: Execution costs
We measured run time and memory costs for the experiments

in theprevioussections. Note that neither programhasbeen fully
optimized,andtheconvolutionalgorithmpresentsseveraltradeoffs
betweenaccuracy andspeed that may requiresometrial and error.

Table1 shows thecosts. Length givesthe trace length in mes-
sages; Duration gives theelapsedtimeof the trace; MBytes gives
the amount of dataspace allocated(not counting stack or code);
CPU secs. gives the user-mode CPU time (kernel mode is negli-
gible in all cases). Thetablealso showsthe(computed) meanper-
node parallelism for thenesting algorithm, and thetimequantum
(q) for theconvolution algorithm. Weran thenesting algorithmon
a 1.7 GHz Pentium 4 running Linux 2.4.20, and the convolution
algorithm on a667MHz AlphaServer runningTru64 UNIX V5.1.

We ran experiments to verify the scaling properties described
in Sections5.1.2 and 5.2.5. The nesting algorithm's run-time and
spacerequirements should be {0|�}�~�� , where} is thetracelength
in messagesand ~ is the mean per-node parallelism. Table 1 in-
cludesrows for severaldifferent trace lengthsfor eachof two sys-
tems,andseveral ~ valuesfor onesystem,to il lustratetheseeffects.
Costs are not quite linear in ~ , probably due to certain constant
spaceoverheads for small ~ , andpoor locality for large ~ .

Theconvolutionalgorithm'srun-timeis mostly dependent on the
traceduration andtimequantum,andnot muchonthetrace length.
Figure23 shows CPU timemeasurementsfor theReceived-header
trace,at various timequanta. Thefigureshows thatthesemeasure-
mentsfit the �'�>�%��� curve,where � is thetraceduration� divided
by the time quantum. We did not run the convolution algorithm
on the longest traces in Table 1; with our current resources, the
algorithm's run-time becomesprohibitive if the trace duration is
morethanabout 100,000 timesthedesired timeprecision(i.e., the
timequantum).

8. FUTURE WORK
Themost important remaining work is to traceand analyzefull-

scale, real-world applicationswith our tools. We arenegotiating
with ownersof several such applications for access to their sys-
tems,but privacy issuesand concernsfor bothproprietarydataand
systemstability haveslowedprogress. Weexpect experimentswith
these traces will forceusto improvethecompetenceand efficiency
of ouralgorithms,and to automateor settle thechoiceof freepara-
meters.Each new tracewehavereceived so far has ledto improve-
ments in ouralgorithms.

Weareextending our toolsto addseveralsignificant capabilities,
includingtechniquesfor locatingthecausesof low-frequency high-
latency end-to-endbehaviors. We would also like to extend our
techniques to handle lock-based interactions between nodes; we

1

10

100

1000

10000

1 10 100 1000

C
P

U
 ti

m
e

(s
ec

)

�

Time quantum (sec)

C*e*(T/quantum)*log(T/quantum)
actual

Figure23: Convolution run time vs. time quantum (Received-header
trace)

want to know not only that node � on call path �0� oftenwaitsfor
lock � , but alsothat � is usually beingheld in thesecasesby node�

on path ��y .
We plan to developa sliding window versionof thenesting al-

gorithm thatprocessesall messageswithinatimewindow into path
patterninstances, beforeprocessingmessagesin thenext (overlap-
ping) timewindow. This modification would solve two problems:
(1) If the systemdemonstratesphased behavior, wheresome pat-
ternis frequentonly in ashort timeinterval but infrequentover the
whole trace, thatpattern may behardfor the user to notice among
all of the other low-frequency patterns. However, if the pattern
is relatively frequent in one time window, then it could be much
easier to spot. (2) The algorithm scaleslinearly in memoryusage
with the numberof messages, but it cannotcurrently handle traces
with greater than a few million messagesand a lot of parallelism.
Windowing would allow processing of much morecomplex traces.

The nesting algorithm produces a set of distinct causal paths.
Onemight want to mergesimilar pathsto form a single visualiz-
ationof the systemasa graph, where an edge between two nodes
shows the probability of a corresponding call pair. Carrasco and
Oncina [4] describeanalgorithmthat might work to mergepaths.

So far, we have only partially addressed the visualization prob-
lem, but any truly useful tool wil l require clever renderingof the
outputs of our algorithms. Both Magpie [13] andNetLogger [26]
provide simplevisualizations, but it is not clear if these are right
for our purposes. TheCritical Path Analysis techniqueof Yang and
Mi ller [19] might alsoprove useful when applied to the outputs of
our algorithms.

9. SUMMARY
Weproposedan approach to performancedebugging for distrib-

utedsystems. It differsfromprior approachesby adopting asstrict
a “black-box” model aspossible, andthrough theuseof low-level
traces, li ttle semantic knowledge, passive monitoring, and offline
processing. Wehavedevelopedtwo distinctly different algorithms,
eachwith their own strengthsand weaknesses. Preliminary results,
based on several different kindsof traces, suggest that thetools do
produce useful and accurate results, and we are now working on
testingthemwith morerealtraces.

10. ACKNOWLE DGEMENTS
We wish to thank Steve Langdon for inspiring this research;

Hank Jakiela, Whit Turner, and RichardLaPerle for their assist-
ance in tracecollection; EmreKiciman for providing and helping
uswith his J2EEtracingsystem;JunLi for providing moretraces;
JohnMacCormick for goodideas; Dawson Engler for shepherding;

16

Nesting algorit hm Convolution algorit hm
Trace Length Duration Mean per-node MBytes CPU secs. � MBytes CPU secs.

(messages) (secs.) parallelism (secs.)
Multi-tier (short) 20,164 50 1.793 1.5 0.23
Multi-tier “normal” 202,520 500 1.641 13.8 2.27 0.01 0.2 6684
Multi-tier “added-delay” 196,438 500 1.744 13.4 2.31 0.01 0.2 6709
Multi-tier (long) 2,026,658 5000 1.612 136.8 23.97
Multi-tier, parallelism-low 769,638 5,000 1.146 54.0 7.54
Multi-tier, parallelism-medium 770,344 500 5.116 54.2 11.15
Multi-tier, parallelism-high 775,254 50 45.057 132.1 233.61
PetStore “normal” 252,024 1,999 1.322 19.8 3.34 0.02 26 12780
PetStore “const-delay” 234,036 2,000 1.313 18.4 2.92 0.02 25 6301
PetStore “normal” (full) 1,345,538 10,799 1.331 97.1 17.12
PetStore “const-delay” (full) 1,288,223 10,799 1.318 93.2 16.41
Email headers 81,044 �����������%� 5 131 2106
Email headers 81,044 ����������� � 30 36 338

Table1: Execution costs

and theanonymousreviewersfor theirprobing comments.

11. REFERENCES
[1] Ali gnmentSoftware,Inc. Appassure.

http://www.alignmentsoftware.com,2003.
[2] S.Bagchi, G. Kar, andJ.L. Hellerstein.Dependency analysis

in distributedsystemsusingfault injection: Application to
problemdetermination in ane-commerceenvironment. In
Proc. 12th Intl. Workshop on DistributedSystems:
Operations& Management, Nancy, France, Oct. 2001.

[3] A. Brown, G. Kar, and A. Keller. An activeapproach to
characterizingdynamicdependenciesfor problem
determination in adistributedenvironment.In Proc. 7th
IFIP/IEEEIntl. Symp.on IntegratedNetwork Management,
Seattle, WA, May 2001.

[4] R. C. Carrasco andJ. Oncina.Learningstochastic regular
grammarsby means of astatemergingmethod.In Proc. 2nd
Intl. Colloq. on Grammatical Inference, pages139–150,
Ali cante,Spain, Sep. 1994.

[5] M. Chen, E. Kiciman,A. Accardi,A. Fox, and E. Brewer.
Usingruntimepathsfor macroanalysis. In Proc.HotOS-IX,
Kauai, HI, May 2003.

[6] M. Chen, E. Kiciman,E. Fratkin,A. Fox, andE. Brewer.
Pinpoint: Problem determination in large,dynamic systems.
In Proc. 2002 Intl. Conf. on DependableSystemsand
Networks, pages 595–604, Washington, DC, June2002.

[7] A. Feldmann. BLT: Bi-layer tracing of HTTPand TCP/IP.In
Proc. WWW9, pages321–335,Amsterdam,May 2000.

[8] E. R. Gansner and S.C. North. An open graphvisualization
systemand itsapplicationsto softwareengineering. Software
– PracticeandExperience, 30(11):1203–1233,Sept 1999.

[9] S.L. Graham, P. B. Kessler, andM. K. McKusick. gprof: A
call graphexecution profiler. In Proc. SIGPLAN Symp.on
Compiler Construction, pages120–126,Boston, MA, June
1982.

[10] J.L. Hellerstein,M. Maccabee,W. N. Mil ls, and J.J. Turek.
ETE:A customizableapproach to measuring end-to-end
response timesandtheir components in distributed systems.
In Proc. ICDCS, pages 152–162, Austin, TX, May 1999.

[11] C. Hrischuk, J.Rolia, and C. Woodside.Automatic
generationof asoftwareperformancemodel using an
object-orientedprototype.In Proc. MASCOTS' 95, pages
399–409,Durham,NC, Jan. 1995.

[12] P. Huang, A. Feldmann,andW. Wil linger. A non-intrusive,
wavelet-based approachto detecting network performance
problems.In Proc. InternetMeasurement Workshop, San
Francisco, CA, Nov. 2001.

[13] R. Isaacs and P. Barham.Performanceanalysis in
loosely-coupleddistributed systems.In 7thCaberNet
RadicalsWorkshop, Bertinoro, Italy, Oct.2002.

[14] V. Jacobson,C. Leres,and S.McCanne.tcpdump.
www.tcpdump.org, 1989.

[15] JBossGroup. http://www.jboss.org/.
[16] E. Kiciman. JBoss request-tracing in Pinpoint, 2003.
[17] J.B. Micheel. Personal communication, 2003.
[18] B. P. Mil ler. Dpm: A measurementsystem for distributed

programs. IEEETrans.on Computers, 37(2):243–248, Feb
1988.

[19] B. P. Mil ler and C.-Q. Yang. Critical pathanalysisfor the
execution of parallel anddistributedprograms. In Proc. 8th
Intl. Conf.on DistributedComputing Systems, pages
366–373,SanJose, CA, June1988.

[20] D. L. Mi ll s. Thenetwork computer asprecisiontimekeeper.
In Proc. Precision TimeandTimeInterval (PTTI)
Applications andPlanningMeeting, pages96–108,Reston,
VA, Dec. 1996.

[21] V. Paxson. Automated packet traceanalysis of TCP
implementations. In Proc. SIGCOMM' 97, pages 167–179,
Cannes,France, Sep. 1997.

[22] Performant,Inc. Optibench.http://www.performant.com/.
[23] QuestSoftwareInc. Performasure.

http://java.quest.com/performasure, 2003.
[24] Sun Microsystems, Inc. JavaPetStoreDemo.

http://developer.java.sun.com/developer/releases/petstore/.
[25] Sun Microsystems, Inc. J2EEplatform specification.

http://java.sun.com/j2ee/, 2003.
[26] B. Tierney, W. Johnston, B. Crowley, G. Hoo,C. Brooks,and

D. Gunter. TheNetLogger methodology for high
performancedistributed systemsperformanceanalysis.In
Proc. IEEEHigh PerformanceDistributed Computing Conf.
(HPDC-7), July 1998.

[27] Y. Zhangand V. Paxson. Detecting stepping stones. In Proc.
9thUSENIX Security Symp., Denver, CO,Aug. 2000.

